前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇量子力學(xué)總結(jié)范文,相信會(huì)為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。
關(guān)鍵詞:經(jīng)典理論 量子力學(xué) 聯(lián)系
中圖分類號(hào):O413.1 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1672-3791(2016)08(a)-0143-02
量子力學(xué)于20世紀(jì)早期建立以來,經(jīng)過飛速的發(fā)展,逐漸成為現(xiàn)代物理學(xué)科中不可分割的一部分。量子力學(xué)是現(xiàn)代量子理論的核心,它的發(fā)展不僅關(guān)乎人類的物質(zhì)文明,還使人們對(duì)量子世界的認(rèn)識(shí)有了革命性的進(jìn)展[1]。
但是,量子力學(xué)并不是一個(gè)完備的理論,其體系中還存在許多問題,特別是微觀與宏觀,即經(jīng)典理論與量子力學(xué)的聯(lián)系。為解決這些迷惑,歷史上相關(guān)科學(xué)家提出了很多實(shí)驗(yàn)與理論。該文旨在以量子力學(xué)發(fā)展史上提出的幾個(gè)實(shí)驗(yàn)為例,對(duì)其進(jìn)行簡(jiǎn)單分析,以展示經(jīng)典理論與量子力學(xué)的聯(lián)系。
1 問題的提出
1935年3月,愛因斯坦等人在EPR論文中提出了“量子糾纏態(tài)”的概念,所謂的“量子糾纏態(tài)”是以兩個(gè)及以上粒子為對(duì)象的。在某種意義上,“量子糾纏態(tài)”可以理解為是把迭加態(tài)應(yīng)用于兩個(gè)及以上的粒子。若存在兩個(gè)處于“量子糾纏態(tài)”的粒子,那這兩個(gè)粒子一定是相互關(guān)聯(lián)的,用量子力學(xué)的知識(shí)去理解,只要人們不去探測(cè),那么每個(gè)粒子的狀態(tài)都不能夠確定。但是,假如同時(shí)使這兩個(gè)粒子保持某一時(shí)刻的狀態(tài)不變,也就是說,使兩個(gè)粒子的迭加態(tài)在一瞬間坍縮,粒子1這時(shí)會(huì)保持一個(gè)狀態(tài)不再發(fā)生變化,根據(jù)守恒定律,粒子2將會(huì)處于一個(gè)與粒子1狀態(tài)相對(duì)應(yīng)的狀態(tài)。如果二者相距非常遙遠(yuǎn),又不存在超距作用的話,是不可能在一瞬間實(shí)現(xiàn)兩個(gè)粒子的相互通信的。但超距作用與當(dāng)今很多理論是相悖的,于是,這里就形成了佯謬,即“EPR佯謬”。
同年,薛定諤提出了一個(gè)實(shí)驗(yàn),后人稱之為“薛定諤的貓”。設(shè)想把一只貓關(guān)在盒子里,盒中有一個(gè)不受貓直接干擾的裝置,這套裝置是由其中的原子衰變進(jìn)行觸發(fā),若原子衰變,裝置會(huì)被觸發(fā),貓會(huì)立即死去。于是,量子力學(xué)中的原子核衰變間接決定了經(jīng)典理論中貓的生死。由量子力學(xué)可知,原子核應(yīng)該處于一種迭加態(tài),這種迭加態(tài)是由“衰變”和“不衰變”兩個(gè)狀態(tài)形成的,那么貓應(yīng)該也是處在一種迭加態(tài),這種迭加態(tài)應(yīng)該是由“死”與“生”兩個(gè)狀態(tài)形成的,貓的生死不再是一個(gè)客觀存在,而是依賴于觀察者的觀測(cè)。顯然,這與常理是相悖的[2]。
這兩個(gè)佯謬的根源是相同的,都是經(jīng)典理論與量子理論之間的關(guān)系。
2 近代研究進(jìn)展
2.1 驗(yàn)證量子糾纏的存在
華裔物理學(xué)家Yanhua Shih[3]曾做過一個(gè)被稱為“幽靈成像”的實(shí)驗(yàn),其實(shí)驗(yàn)過程及現(xiàn)象大致可以描述為:假設(shè)存在一個(gè)糾纏光源,這個(gè)光源可以發(fā)出兩種互為糾纏的光子,通過偏振器使兩種光子相互分離,令第一束光子通過一個(gè)狹縫,第二束不處理,然后觀察兩束光的投影,結(jié)果發(fā)現(xiàn)第二束光的投影形狀與第一束光通過的狹縫形狀完全相同。
人們發(fā)現(xiàn),如果僅僅使用經(jīng)典理論,實(shí)驗(yàn)現(xiàn)象是無法解釋的,必須應(yīng)用量子理論,才能解釋“幽靈成像”的現(xiàn)象。這個(gè)實(shí)驗(yàn)也恰好驗(yàn)證了“量子糾纏”現(xiàn)象的存在。
2.2 量子世界中的歐姆定律
歐姆定律是由德國(guó)物理學(xué)家Ohm于19世紀(jì)早期提出來的,它是一種基于觀察材料的電學(xué)傳輸性質(zhì)得到的經(jīng)驗(yàn)定律,其內(nèi)容是:在同一電路中,導(dǎo)體中的電流跟導(dǎo)體兩端所加的電壓成正比,跟導(dǎo)體自身電阻成反比,即 (U指導(dǎo)體兩端電壓;R指導(dǎo)體電阻;I指通過導(dǎo)體的電流)。
18世紀(jì)二、三十年代,人們認(rèn)為經(jīng)典方法在宏觀領(lǐng)域是正確的,但是在微觀領(lǐng)域?qū)?huì)被打破。Landauer公式給出了納米線電阻的計(jì)算方法,即(h為普朗克常量;e為電子電量;N為橫波模式數(shù)量);而在宏觀中,(為材料的密度;l為樣品的長(zhǎng)度;s為樣品的橫截面積)。由此發(fā)現(xiàn),在宏觀領(lǐng)域,樣品的電阻是隨著樣品的長(zhǎng)度增加而增加的,而在微觀領(lǐng)域,樣品的電阻與樣品的長(zhǎng)度沒有關(guān)系。
Weber[4]等人制備了原子尺度的納米線并進(jìn)行觀察,實(shí)驗(yàn)發(fā)現(xiàn),在微觀領(lǐng)域,歐姆定律也是滿足的。Ferry[5]認(rèn)為樣品的電阻是由多種機(jī)理所導(dǎo)致的,而他最后得到的結(jié)果正是由于多種機(jī)理的相互疊加。經(jīng)過分析,他認(rèn)為歐姆定律何時(shí)開始生效取決于納米線中電子耗散的力度,力度越大說明開始生效時(shí)的尺度越小。但這也同時(shí)引發(fā)了另一個(gè)問題的思考:低溫條件下,歐姆定律是仍然成立的,也就是說經(jīng)典理論仍然成立,但往往是希望在低溫下研究比較純粹的量子效應(yīng)。低溫條件下歐姆定律的成立要求在進(jìn)行實(shí)驗(yàn)研究時(shí),必須花費(fèi)更多的精力來使得經(jīng)典理論與量子理論分離開。
2.3 生活中的量子力學(xué)――光合作用與量子力學(xué)
Scholes等[6]從兩種不同的海藻中提取出了一種名為捕光色素復(fù)合體的化學(xué)物質(zhì),并在其正常的生活條件下,通過二維電子光譜術(shù)對(duì)其作用機(jī)理進(jìn)行了分析研究。他們首先使用了飛秒激光脈沖模擬太陽(yáng)光來激發(fā)這些蛋白,發(fā)現(xiàn)了會(huì)長(zhǎng)時(shí)間存在的量子狀態(tài)。也就是說,這些蛋白吸收的光能能夠在同一時(shí)刻存在于不同地點(diǎn),而這實(shí)際上是一種量子迭加態(tài)。由此可見,量子力學(xué)與光合作用是有很大聯(lián)系的。
3 結(jié)語
從近幾年來量子力學(xué)的基本問題和相關(guān)的實(shí)驗(yàn)研究可以看出,雖然經(jīng)典理論與量子理論的聯(lián)系仍然是一個(gè)懸而未決的問題,但是當(dāng)代科學(xué)家已經(jīng)能夠通過各種精妙的實(shí)驗(yàn)逐步解決歷史遺留的一個(gè)個(gè)謎團(tuán),使得微觀領(lǐng)域的單個(gè)量子的測(cè)量與控制成為可能,并且積極研究宏觀現(xiàn)象的微觀本質(zhì),將生活與量子力學(xué)逐漸的聯(lián)系起來。對(duì)于“經(jīng)典理論與量子力學(xué)的聯(lián)系”這一專題還需要進(jìn)行不斷研究,使量子力學(xué)得到進(jìn)一步完善與發(fā)展。
參考文獻(xiàn)
[1] 孫昌璞.量子力學(xué)若干基本問題研究的新進(jìn)展[J].物理,2001,30(5):310-316.
[2] 孫昌璞.經(jīng)典與量子邊界上的“薛定諤貓”[J].科學(xué),2001(3):2,7-11.
[3] Shih Y. The Physics of Ghost Imaging[J].2008.
[4] Weber B, Mahapatra S, Ryu H, et al. Ohm's law survives to the atomic scale[J].Science,2012,335(6064):64-67.
論文摘要:針對(duì)鄭州輕工業(yè)學(xué)院量子力學(xué)教學(xué)現(xiàn)狀,結(jié)合“量子力學(xué)”的課程特點(diǎn),立足于提高學(xué)生學(xué)習(xí)積極性和培養(yǎng)學(xué)生科學(xué)探索精神及創(chuàng)新能力,簡(jiǎn)要介紹了近年來在教學(xué)內(nèi)容、教學(xué)方法、教學(xué)手段和考核方法等方面進(jìn)行的一些改革嘗試。
論文關(guān)鍵詞:量子力學(xué);教學(xué)改革;物理思想
“量子力學(xué)”是20世紀(jì)物理學(xué)對(duì)科學(xué)研究和人類文明進(jìn)步的兩大標(biāo)志性貢獻(xiàn)之一,已經(jīng)成為物理學(xué)專業(yè)及部分工科專業(yè)最重要的基礎(chǔ)課程之一,是學(xué)習(xí)“固體物理”、“材料科學(xué)”、“材料物理與化學(xué)”和“激光原理”等課程的重要基礎(chǔ)。通過這門課程的學(xué)習(xí),學(xué)生能熟練掌握量子力學(xué)的基本概念和基本理論,具備利用量子力學(xué)理論分析問題和解決問題的能力。同時(shí),這門課程對(duì)培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí)及科學(xué)素養(yǎng)亦具有十分重要的意義。然而,“量子力學(xué)”本身是一門非常抽象的課程,眾多學(xué)生談“量子”色變,教學(xué)效果可想而知。如何激發(fā)學(xué)生學(xué)習(xí)本課程的熱情,充分調(diào)動(dòng)學(xué)生的積極性和主動(dòng)性,提高量子力學(xué)的教學(xué)水平和教學(xué)質(zhì)量,已經(jīng)成為擺在教師面前的重要課題。近年來,筆者在借鑒前人經(jīng)驗(yàn)的基礎(chǔ)上,結(jié)合鄭州輕工業(yè)學(xué)院(以下簡(jiǎn)稱“我?!保┙虒W(xué)實(shí)際,在“量子力學(xué)”的教學(xué)內(nèi)容和教學(xué)方法方面做了一些有益的改革嘗試,取得了較好的效果。
一、“量子力學(xué)”教學(xué)內(nèi)容的改革
量子力學(xué)理論與學(xué)生長(zhǎng)期以來接觸到的經(jīng)典物理體系相去甚遠(yuǎn),尤其是處理問題的思路和手段與經(jīng)典物理截然不同,但它們之間又不無關(guān)聯(lián),許多量子力學(xué)中的基本概念和基本理論是類比經(jīng)典物理中的相關(guān)內(nèi)容得出的。因此,在“量子力學(xué)”教學(xué)中,一方面需要學(xué)生摒棄在經(jīng)典物理學(xué)習(xí)中形成的固有觀念和認(rèn)識(shí),另一方面在學(xué)習(xí)某些基本概念和基本理論時(shí)又要求學(xué)生建立起與經(jīng)典物理之間的聯(lián)系以形成較為直觀的物理圖像,這種思維上的沖突導(dǎo)致學(xué)生在學(xué)習(xí)這門課程時(shí)困惑不堪。此外,這門課程理論性較強(qiáng),眾多學(xué)生陷于煩瑣的數(shù)學(xué)推導(dǎo)之中,導(dǎo)致學(xué)習(xí)興趣缺失。針對(duì)以上教學(xué)中發(fā)現(xiàn)的問題,筆者對(duì)“量子力學(xué)”課程的教學(xué)內(nèi)容作了一些有益的調(diào)整。
1.理清脈絡(luò),強(qiáng)化知識(shí)背景
從經(jīng)典物理所面臨的困難出發(fā),到半經(jīng)典半量子理論的形成,最終到量子理論的建立,對(duì)量子力學(xué)的發(fā)展脈絡(luò)進(jìn)行細(xì)致的、實(shí)事求是的分析,特別是對(duì)量子理論早期的概念發(fā)展有一個(gè)準(zhǔn)確清晰的理解,弄清楚到底哪些概念和原理是已經(jīng)證明為正確并得到公認(rèn)的,還存在哪些不完善的地方。這樣一方面可使學(xué)生對(duì)量子力學(xué)中基本概念和基本理論的形成和建立的科學(xué)歷史背景有一深刻了解,有助于學(xué)生理清經(jīng)典物理與量子理論之間的界限和區(qū)別,加深他們對(duì)這些基本概念和基本理論的理解;另一方面,可使學(xué)生對(duì)蘊(yùn)藏在這一歷程中的智慧火花和科學(xué)思維方法有一全面的了解,有助于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)及科學(xué)素養(yǎng)。比如:對(duì)于玻爾理論,由于對(duì)量子化假設(shè)很難用已經(jīng)成形的經(jīng)典理論來解釋,學(xué)生往往會(huì)覺得不可思議,難以理解。為此,在講解這部分內(nèi)容時(shí),很有必要介紹一下玻爾理論產(chǎn)生的歷史背景,告訴學(xué)生在玻爾的量子化假設(shè)之前就已經(jīng)出現(xiàn)了普朗克的量子論和愛因斯坦的光量子概念,且大量關(guān)于原子光譜的實(shí)驗(yàn)數(shù)據(jù)也已經(jīng)被掌握,之前盧瑟福提出的簡(jiǎn)單行星模型卻與經(jīng)典物理理論及實(shí)驗(yàn)事實(shí)存在嚴(yán)重背離。為了解決這些問題,玻爾理論才應(yīng)運(yùn)而生。在用量子力學(xué)求解氫原子定態(tài)波函數(shù)時(shí),還可以通過定態(tài)波函數(shù)的概率分布圖,向?qū)W生介紹所謂的玻爾軌道并不是真實(shí)存在的,只是電子出現(xiàn)幾率比較大的區(qū)域。通過這樣講述,學(xué)生可以清晰地體會(huì)到玻爾理論的承上啟下的作用,而又不至于將其與量子力學(xué)中的概念混為一談。
2.重在物理思想,壓縮數(shù)學(xué)推導(dǎo)
在物理學(xué)研究中,數(shù)學(xué)只是用來表述物理思想并在此基礎(chǔ)上進(jìn)行邏輯演算的工具,教師不能將深刻的物理思想淹沒在復(fù)雜的數(shù)學(xué)形式之中。因此,在教學(xué)過程中,教師要著重于加強(qiáng)基本概念和基本理論的講授,把握這些概念和理論中所蘊(yùn)含的物理實(shí)質(zhì)。對(duì)一些涉及繁難數(shù)學(xué)推導(dǎo)的內(nèi)容,在教學(xué)中刻意忽略具體數(shù)學(xué)推導(dǎo)過程,著重于使學(xué)生掌握其中的思想方法。例如:在一維線性諧振子問題的教學(xué)中,對(duì)于數(shù)學(xué)方面的問題,只要求學(xué)生能正確寫出薛定諤方程、記住其結(jié)論即可,重點(diǎn)放在該類問題所蘊(yùn)含的物理意義及對(duì)現(xiàn)成結(jié)論的應(yīng)用上。這樣,學(xué)生就不會(huì)感到枯燥無味,而能始終保持較高的學(xué)習(xí)熱情。
二、教學(xué)方法改革
傳統(tǒng)的“填鴨式”教學(xué)法把課堂變成了教師的“一言堂”,使得學(xué)生在教學(xué)活動(dòng)中始終處于被動(dòng)接受地位,極大地壓制了學(xué)生學(xué)習(xí)的主觀能動(dòng)性,十分不利于知識(shí)的獲取以及對(duì)學(xué)生創(chuàng)新能力及科學(xué)思維的培養(yǎng)。而且,“量子力學(xué)”這門課程本身實(shí)驗(yàn)基礎(chǔ)薄弱、理論性較強(qiáng),物理圖像不夠直觀,一味采取灌輸式教學(xué),學(xué)生勢(shì)必感到枯燥,甚至厭煩。長(zhǎng)期以往,學(xué)習(xí)積極性必然受挫,學(xué)習(xí)效果自然大打折扣。為了提高學(xué)生學(xué)習(xí)興趣,激發(fā)其學(xué)習(xí)的積極性,培養(yǎng)其科學(xué)探索精神及創(chuàng)新能力,筆者在教學(xué)方法上進(jìn)行了一些有益的探索。
1.發(fā)揮學(xué)生主體作用
除卻必要的教學(xué)內(nèi)容講解外,每節(jié)課都留出一定的師生互動(dòng)時(shí)間。教師通過創(chuàng)設(shè)問題情景,引導(dǎo)學(xué)生進(jìn)行研究討論,或者針對(duì)已講授內(nèi)容,使學(xué)生對(duì)已學(xué)內(nèi)容進(jìn)行復(fù)習(xí)、總結(jié)、辨析,以加深理解;或者針對(duì)未講授內(nèi)容,激發(fā)學(xué)生學(xué)習(xí)新知識(shí)的興趣(比如,在講授完一維無限深方勢(shì)阱和一維線性諧振子這兩個(gè)典型的束縛態(tài)問題后就可引導(dǎo)學(xué)生思考“非束縛態(tài)下微觀粒子又將表現(xiàn)出什么樣的行為”),這樣學(xué)生就會(huì)積極地預(yù)習(xí)下節(jié)內(nèi)容;或者選擇一些有代表性的習(xí)題,讓學(xué)生提出不同的解決辦法,培養(yǎng)學(xué)生的創(chuàng)新能力。對(duì)于在課堂上不能解決的問題,積極鼓勵(lì)學(xué)生利用圖書館及網(wǎng)絡(luò)資源等尋求解決,培養(yǎng)學(xué)生的科學(xué)探索精神。此外,還可使學(xué)生自由組合,挑選他們感興趣的與課程有關(guān)的題目進(jìn)行討論、調(diào)研并完成小組論文,這一方面激發(fā)學(xué)生的自主學(xué)習(xí)積極性,另一方面使其接受初步的科研訓(xùn)練,一舉兩得。 轉(zhuǎn)貼于
2.注重構(gòu)建物理圖像
在實(shí)際教學(xué)中著重注意物理圖像的構(gòu)建,使學(xué)生對(duì)一些難以理解的概念和理論形成較為直觀的印象,從而形成深刻的記憶和理解。例如:借助電子束衍射實(shí)驗(yàn),通過三個(gè)不同的實(shí)驗(yàn)過程(強(qiáng)電子束、弱電子束及弱電子束長(zhǎng)時(shí)間曝光),即可為實(shí)物粒子的波粒二象性構(gòu)建出一幅清晰的物理圖像;借助電子束衍射實(shí)驗(yàn)圖像,再以光波類比電子波,即可凝練出波函數(shù)的統(tǒng)計(jì)解釋;借助電子雙縫衍射實(shí)驗(yàn)圖像,可使學(xué)生更易接受和理解態(tài)疊加原理;借助解析幾何中的坐標(biāo)系,可很好地為學(xué)生建立起表象的物理圖像。盡管這其中光波和電子波、坐標(biāo)系和表象這些概念之間有本質(zhì)上的區(qū)別,但借助這些學(xué)生已經(jīng)熟知和深刻理解的概念,可使學(xué)生非常容易地接受和理解量子力學(xué)中難以言明的概念和理論,同時(shí),也可使學(xué)生掌握這種物理圖像的構(gòu)建能力,對(duì)培養(yǎng)學(xué)生的創(chuàng)新思維具有非常積極地作用。
三、教學(xué)手段和考核方式改革
1.課程教學(xué)采用多種先進(jìn)的教學(xué)方式
如安排小組討論課,對(duì)難于理解的概念和規(guī)律進(jìn)行討論。先是各小組內(nèi)討論,再是小組間辯論,最后老師對(duì)各小組討論和辯論的觀點(diǎn)進(jìn)行評(píng)述和指正。例如,在講到微觀粒子的波函數(shù)時(shí),有的學(xué)生認(rèn)為是全部粒子組成波函數(shù),有的學(xué)生認(rèn)為是經(jīng)典物理學(xué)的波。這些問題的討論激發(fā)了學(xué)生的求知欲望,從而進(jìn)一步激發(fā)了學(xué)生對(duì)一些不易理解的概念和量子原理進(jìn)行深入理解,直至最后充分理解這些內(nèi)容。另外課程作業(yè)布置小論文,邀請(qǐng)國(guó)內(nèi)外專家開展系列量子力學(xué)講座等都是不錯(cuò)的方式。
2.堅(jiān)持研究型教學(xué)方式
把課程教學(xué)和科研相結(jié)合,在教學(xué)過程中針對(duì)教學(xué)內(nèi)容,吸取科研中的研究成果,通過結(jié)合最新的科研動(dòng)態(tài),向?qū)W生講授在相關(guān)領(lǐng)域的應(yīng)用以培養(yǎng)學(xué)生學(xué)習(xí)興趣。在量子力學(xué)誕生后,作為現(xiàn)代物理學(xué)的兩大支柱之一的現(xiàn)代物理學(xué)的每一個(gè)分支及相關(guān)的邊緣學(xué)科都離不開量子力學(xué)這個(gè)基礎(chǔ),量子理論與其他學(xué)科的交叉越來越多。例如:基本粒子、原子核、原子、分子、凝聚態(tài)物理到中子星、黑洞各個(gè)層次的研究以量子力學(xué)為基礎(chǔ);量子力學(xué)在通信和納米技術(shù)中的應(yīng)用;量子理論在生物學(xué)中的應(yīng)用;量子力學(xué)與正在研究的量子計(jì)算機(jī)的關(guān)系等,在教學(xué)中適當(dāng)?shù)卮┎暹@些知識(shí),擴(kuò)大學(xué)生的知識(shí)面,消除學(xué)生對(duì)量子力學(xué)的片面認(rèn)識(shí),提高學(xué)生學(xué)習(xí)興趣和主動(dòng)性。
3.利用量子力學(xué)課程將人文教育與專業(yè)教學(xué)相結(jié)合
量子力學(xué)從誕生到發(fā)展的物理學(xué)史所包含的創(chuàng)新思維是迄今為止哪一門學(xué)科都難以比擬的。在19世紀(jì)末至20世紀(jì)初,經(jīng)典物理學(xué)晴空萬里,然而黑體輻射、光電效應(yīng)、原子光譜等物理現(xiàn)象的實(shí)驗(yàn)結(jié)果嚴(yán)重沖擊經(jīng)典物理學(xué)理論,讓經(jīng)典物理學(xué)陷入危機(jī)四伏的境地。1900年,德國(guó)物理學(xué)家普朗克創(chuàng)造性地引入了能量子的概念,成功地解釋了黑體輻射現(xiàn)象,量子概念誕生。1905年,愛因斯坦進(jìn)一步完善了量子化觀念,指出能量不僅在吸收和輻射時(shí)是不連續(xù)的(普朗克假設(shè)),而且在物質(zhì)相互作用中也是不連續(xù)的。1913年,玻爾將量子化概念引入到原子中,成功解釋了有近30年歷史的巴爾末經(jīng)驗(yàn)光譜公式。泡利突破玻爾半經(jīng)典、半量子論的局限,給予了令玻爾理論不安的反常塞曼效應(yīng)以合理解釋。1924年,德布羅意突破普朗克能量子觀念提出微觀粒子具有波粒二象性,開始與經(jīng)典理論分庭抗禮。和學(xué)生一起重溫量子力學(xué)史的發(fā)展之路,在教學(xué)過程中展現(xiàn)量子力學(xué)數(shù)學(xué)形式之美,使學(xué)生在科學(xué)海洋中得到美的享受,從精神上熏陶他們的創(chuàng)新精神。
4.考試方式改革
在本課程的教學(xué)中采用了教考分離,通過小考題的形式復(fù)習(xí)章節(jié)內(nèi)容,根據(jù)學(xué)生的實(shí)際水平適當(dāng)輔導(dǎo)答疑,注重學(xué)生對(duì)量子力學(xué)基礎(chǔ)知識(shí)理解的考核。對(duì)于評(píng)價(jià)系統(tǒng)的建立,其中平時(shí)成績(jī)(包括作業(yè)、討論、綜合表現(xiàn)等)占30%,期末考試占70%。從實(shí)施的效果來看,督促了學(xué)生的學(xué)習(xí),收到了較好的效果,受到學(xué)生的歡迎。
多年以前,高科技最牛的美國(guó)就已不把電子計(jì)算機(jī)列為高科技產(chǎn)品了。
但巨高性能計(jì)算機(jī)仍是信息時(shí)代的高科技標(biāo)志物件之一。2012年諾貝爾物理學(xué)獎(jiǎng)發(fā)給了法國(guó)人塞爾日·阿羅什和美國(guó)人大衛(wèi)·維恩蘭德,這兩位科學(xué)家的研究成果為新一代超級(jí)量子計(jì)算機(jī)的誕生提供了可能性。
惡搞一下:法國(guó)人浪漫,而簡(jiǎn)稱美國(guó)人為美人,那么,浪漫人美人=?
文藝范兒的信息
不往濫俗里想,那么,答案就是很文藝化的表達(dá)了。其實(shí),“信息”最初是相當(dāng)文藝范兒的,而不是20世紀(jì)中期才開始熱門起來的科技詞匯。
一般認(rèn)為,中文的“信息”一詞出自南唐詩(shī)人李中《暮春懷故人》:“夢(mèng)斷美人沉信息,目穿長(zhǎng)路倚樓臺(tái)?!薄?“美眉音信消息全無啊,夢(mèng)里也夢(mèng)不到你,我獨(dú)自上樓倚欄,望眼欲穿望到長(zhǎng)路盡頭也不見你。”這么拙劣地意譯,也讓人感覺到深深的思念。
其實(shí),在李中之前一百多年,與李商隱齊名的唐朝大詩(shī)人杜牧《寄遠(yuǎn)》里就有“信息”了:“塞外音書無信息,道旁車馬起塵埃。”還有比小杜更早的,唐朝詩(shī)人崔備的《清溪路中寄諸公》:“別來無信息,可謂井瓶沉?!?/p>
宋朝的婉約派大詞人柳永、李清照也用過“信息”這個(gè)詞。因金兵入侵而流離失所的李清照思念當(dāng)年安樂的故鄉(xiāng),心理上把信息的價(jià)格定成了真正的天價(jià):“不乞隋珠與和璧,只乞鄉(xiāng)關(guān)新信息?!薄昵暗奶扑沃袊?guó),其高科技雖是世界第一,但信息技術(shù)還是跟現(xiàn)在沒法比的,要靠驛馬、鴻雁甚至人步行來傳遞信息,速度慢而效率低,信息珍貴啊。
在地球的西方呢?雖然香農(nóng)1948年就劃時(shí)代地把信息引為數(shù)學(xué)研究的對(duì)象,賦予其新的科學(xué)的涵義;至1956年,“人工智能”術(shù)語也出現(xiàn)了。可最早討論數(shù)據(jù)、信息、知識(shí)與智慧之間關(guān)系的,卻是得過諾貝爾文學(xué)獎(jiǎng)的大詩(shī)人艾略特(T. S. Eliot;錢鐘書故意譯為“愛利惡德”)。他在1934年的詩(shī)歌“The Rock”中寫道:
Where is the Life we have lost in living?
Where is the wisdom we have lost in knowledge?
Where is the knowledge we have lost in information?
Where is the information we have lost in data?
我們迷失于生活中的生命在哪里?
我們迷失于知識(shí)中的智慧在哪里?
我們迷失于信息中的知識(shí)在哪里?
我們迷失于數(shù)據(jù)中的信息在哪里?
盡管第四句是好事者后加的,但詩(shī)人還是直指本質(zhì)地提出了信息暴炸時(shí)代最困擾人的難題:如何不讓我們的生命和智慧都迷失在數(shù)據(jù)中?
量子計(jì)算機(jī)和量子信息技術(shù),提供了一種讓生命和智慧不要淹沒在數(shù)據(jù)的海洋中的途徑、工具和可能。
量子與量子計(jì)算機(jī)
量子理論是現(xiàn)代物理學(xué)的兩大基石之一,為從微觀理解宏觀提供了理論基礎(chǔ)??陀^世界有物質(zhì)、能量?jī)煞N存在形式,物質(zhì)和能量可以互相轉(zhuǎn)換(見愛因斯坦的質(zhì)能方程),量子理論就是從研究極度微觀領(lǐng)域物質(zhì)的能量入手而建立起來的。
我們知道,微觀世界中有許多不同于宏觀世界的現(xiàn)象和規(guī)則。經(jīng)典物理學(xué)理論中的能量是連續(xù)變化的,可取任意值,但科學(xué)家們發(fā)現(xiàn)微觀世界中的很多物理現(xiàn)象無法解釋。1900年12月14日,普朗克在解釋“黑體輻射”時(shí)提出:像原子是一切物質(zhì)的構(gòu)成單元一樣,“能量子(量子)”是能量的最小單元,原子吸收或發(fā)射能量是一份一份地進(jìn)行的。這是量子物理理論的誕生。
1905年,愛因斯坦把量子概念引進(jìn)光的傳播過程,提出“光量子(光子)”的概念,并提出光的“波粒二象性”。1920年代,德布羅意提出“物質(zhì)波”概念,即一切物質(zhì)粒子均有波粒二象性,海森堡等建立了量子矩陣力學(xué),薛定諤建立了量子波動(dòng)力學(xué),量子理論進(jìn)入了量子力學(xué)階段。1928年,狄拉克完成了矩陣力學(xué)和波動(dòng)力學(xué)之間的數(shù)學(xué)轉(zhuǎn)換,對(duì)量子力學(xué)理論進(jìn)行了系統(tǒng)的總結(jié),成功地將相對(duì)論和量子力學(xué)兩大理論體系結(jié)合起來,使量子理論進(jìn)入量子場(chǎng)論階段。
“量子”詞源拉丁語quantum,意為“某數(shù)量的某事物”。現(xiàn)代物理學(xué)中,某些物理量的變化是以最小的單位跳躍式進(jìn)行的,而不是連續(xù)的,這個(gè)最小的基本單位叫做量子;或者說,一個(gè)物理量如果有不可連續(xù)分割的最小的基本單位,則這個(gè)物理量(所有的有形性質(zhì))是“可量子化的”,或者說其物理量的數(shù)值會(huì)是特定的數(shù)值而非任意值。例如,在(休息狀態(tài))的原子中,電子的能量是可量子化的,這能決定原子的穩(wěn)定和一般問題。
雖然量子理論與我們?nèi)粘=?jīng)驗(yàn)感覺的世界大不一樣,但量子力學(xué)已經(jīng)在真實(shí)世界應(yīng)用。激光器工作的原理,實(shí)際上就是激發(fā)一個(gè)特定量子散發(fā)能量?,F(xiàn)代社會(huì)要處理大量數(shù)據(jù)和信息,需要計(jì)算的機(jī)器(計(jì)算機(jī))。量子力學(xué)的突破,使瓦格納等于1930年發(fā)現(xiàn)半導(dǎo)體同時(shí)有導(dǎo)體和絕緣體的性質(zhì),后來才有了用于電子計(jì)算機(jī)的同時(shí)作為電子信號(hào)放大器和轉(zhuǎn)換器的晶體管,再有了集成電路芯片,今天的一個(gè)尖端芯片可集聚數(shù)十億個(gè)微處理器。
隨著計(jì)算機(jī)科技的發(fā)展,發(fā)現(xiàn)能耗導(dǎo)致發(fā)熱而影響芯片集成度,限制了計(jì)算速度;能耗源于計(jì)算過程中的不可逆操作,但計(jì)算機(jī)都可找到對(duì)應(yīng)的可逆計(jì)算機(jī)且不影響運(yùn)算能力。既然都能改為可逆操作,在量子力學(xué)中則可用一個(gè)幺正變換來表示。1969年,威斯納提出“基于量子力學(xué)的計(jì)算設(shè)備”,豪勒夫等于1970年代論述了“基于量子力學(xué)的信息處理”。1980年代量子計(jì)算機(jī)的理論變得很熱鬧。費(fèi)曼發(fā)現(xiàn)模擬量子現(xiàn)象時(shí),數(shù)據(jù)量大至無法用電子計(jì)算機(jī)計(jì)算,在1982年提出用量子系統(tǒng)實(shí)現(xiàn)通用計(jì)算以減少運(yùn)算時(shí)間;杜斯于1985年提出量子圖靈機(jī)模型。1994年,數(shù)學(xué)家彼得·秀爾提出量子質(zhì)因子分解算法,因其可破解現(xiàn)行銀行和網(wǎng)絡(luò)應(yīng)用中的加密,許多人開始研究實(shí)際的量子計(jì)算機(jī)。
在物理上,傳統(tǒng)的電子計(jì)算機(jī)可以被描述為對(duì)輸入信號(hào)串行按一定算法進(jìn)行變換的機(jī)器,其算法由機(jī)器內(nèi)部半導(dǎo)體集成邏輯電路來實(shí)現(xiàn),其輸入態(tài)和輸出態(tài)都是傳統(tǒng)信號(hào)(輸入態(tài)和輸出態(tài)都是某一力學(xué)量的本征態(tài)),存儲(chǔ)數(shù)據(jù)的每個(gè)單元(比特bit)要么是“0”要么是“1”,即在某一時(shí)間僅能存儲(chǔ)4個(gè)二進(jìn)制數(shù)(00、01、10、11)中的一個(gè)。而量子計(jì)算機(jī)靠控制原子或小分子的狀態(tài),用量子算法運(yùn)算數(shù)據(jù),輸入態(tài)和輸出態(tài)為一般的疊加態(tài),其相互之間通常不正交,其中的變換為所有可能的幺正變換;因?yàn)榱孔討B(tài)有疊加性(重疊)和相干性(牽連、糾纏)兩個(gè)本質(zhì)特性,量子比特(量子位qubit)可是“0”或“1”或兩個(gè)“0”或兩個(gè)“1”,即可同時(shí)存儲(chǔ)4個(gè)二進(jìn)制數(shù)(00、01、10、11),實(shí)現(xiàn)量子并行計(jì)算(量子計(jì)算機(jī)對(duì)每一個(gè)疊加分量實(shí)現(xiàn)的變換相當(dāng)于一種傳統(tǒng)計(jì)算,所有傳統(tǒng)計(jì)算同時(shí)完成,并按一定的概率振幅疊加,給出量子計(jì)算機(jī)的輸出結(jié)果),從而呈指數(shù)級(jí)地提高了運(yùn)算能力——一臺(tái)未來的量子計(jì)算機(jī)3分鐘就能搞定當(dāng)今世界上所有電子計(jì)算機(jī)合起來100萬年才能處理完的數(shù)據(jù)。用量子力學(xué)語言說,傳統(tǒng)計(jì)算機(jī)是沒有用到量子力學(xué)中重疊和牽連特性的一種特殊的量子計(jì)算機(jī)。從理論上講,一個(gè)250量子比特(由250個(gè)原子構(gòu)成)的存儲(chǔ)器,可能存儲(chǔ)2的250次方個(gè)二進(jìn)制數(shù),比人類已知宇宙中的全部原子數(shù)還多。而且,集成芯片制造業(yè)很快將步入16納米的工藝,而量子效應(yīng)將嚴(yán)重影響芯片的設(shè)計(jì)和生產(chǎn),又因傳統(tǒng)技術(shù)的物理局限性,硅芯片已到盡頭,突破的希望在于量子計(jì)算。
量子世界的死貓活貓與粒子控制
喜好科技的文藝青年可能看過美劇《生活大爆炸》,其中有那只著名的“薛定諤貓”:一只被關(guān)在黑箱里的貓,箱里有毒藥瓶,瓶上有錘子,錘子由電子開關(guān)控制,電子開關(guān)由一個(gè)獨(dú)立的放射性原子控制;若原子核衰變放出粒子觸動(dòng)開關(guān),錘落砸瓶放毒,則貓死。薛定諤構(gòu)想的這個(gè)實(shí)驗(yàn),被引為解釋量子世界的經(jīng)典。而量子理論認(rèn)為,單個(gè)原子的狀態(tài)其實(shí)不是非此即彼,或說箱里的原子既衰變又沒有衰變,表現(xiàn)為一種概率;對(duì)應(yīng)到貓,則是既死又活。若我們不揭開蓋子觀察,永遠(yuǎn)也不知道貓的死活,它永遠(yuǎn)處于非死非活的疊加態(tài)。
宏觀態(tài)的確定性,其實(shí)是億萬微觀粒子、無數(shù)種概率的宏觀統(tǒng)計(jì)結(jié)果。微觀粒子通常表現(xiàn)為兩種截然不同的狀態(tài)糾纏一起,一旦用宏觀方法觀察這種量子態(tài),只要稍一揭開箱蓋,疊加態(tài)立即就塌縮了(擾破壞掉),薛定諤貓就突然由量子的又死又活疊加態(tài)變成宏觀的確定態(tài)。用實(shí)驗(yàn)研究量子,首先要捕獲單個(gè)的量子。即若不分離出單個(gè)粒子,則粒子神秘的量子性質(zhì)便會(huì)消失。科學(xué)家們長(zhǎng)期以來頭疼的是,未找到既不破壞量子態(tài),又能實(shí)際觀測(cè)它的實(shí)驗(yàn)方法,他們只能在頭腦中進(jìn)行思想實(shí)驗(yàn),而無法實(shí)際驗(yàn)證其預(yù)言。
而阿羅什和維恩蘭德的研究,發(fā)明了在保持個(gè)體粒子的量子力學(xué)屬性的情況下對(duì)其進(jìn)行觀測(cè)和操控的方法,則可實(shí)證地說出薛定諤貓究竟是死貓還是活貓,而且為研制超級(jí)量子計(jì)算機(jī)帶來了更大可能,因?yàn)榱孔佑?jì)算機(jī)中最基礎(chǔ)的部分——得到1個(gè)量子比特已獲成功。
光子和原子是量子世界中的兩種基本粒子,光子形成可見光或其他電磁波,原子構(gòu)成物質(zhì)。他們研究光與物質(zhì)間的基本相互作用,方法大同小異:維因蘭德利用光或光子來捕捉、控制以及測(cè)量帶電原子或者離子。他平行放置兩面極精巧的鏡子,鏡間是真空空腔,溫度接近絕對(duì)零度(約-273℃)。一個(gè)光子進(jìn)入空腔后,在兩鏡面間不斷反射。阿羅什則通過發(fā)射原子穿過阱,控制并測(cè)量了捕獲的光子或粒子。他用一系列電極營(yíng)造出一個(gè)電場(chǎng)囚籠,粒子像是被裝進(jìn)碗里的玻璃球;然后用激光冷卻粒子,最終有一個(gè)最冷的粒子停在了碗底。阿羅什在捕獲單個(gè)光子后,引入了特殊的里德伯原子,作為觀測(cè)工具,從而得到光子的數(shù)據(jù)。維因蘭德向碗中發(fā)射激光,通過觀測(cè)光譜線而得到碗底粒子的數(shù)據(jù)。
2007年以來,加拿大、美國(guó)、德國(guó)和中國(guó)的科學(xué)家都說自己研制出了某種級(jí)別的量子計(jì)算機(jī),但到今天卻仍無一個(gè)投入實(shí)用。光鐘更接近現(xiàn)實(shí),因?yàn)榭刹倏貑蝹€(gè)量子,就能按意愿調(diào)控量子的振蕩(相當(dāng)于鐘擺)頻率,越高越精;目前實(shí)驗(yàn)的光鐘,若從宇宙產(chǎn)生起開始計(jì)時(shí),至今只誤差5秒。光鐘可使衛(wèi)星定位和計(jì)算太空船的位置更精確……
神話般的量子信息技術(shù)
科幻作家克萊頓(著有《侏羅紀(jì)公園》、《失去的世界》等)在科幻小說《時(shí)間線》中,曾文藝化地描述量子計(jì)算,用了“量子多宇宙”、“量子泡沫蟲洞”、“量子運(yùn)輸”、“量子糾纏態(tài)”、“電子的32個(gè)量子態(tài)”等讓常人倍感高深的說法。其中一些如今正在證實(shí)或變現(xiàn)。
如果清朝政府的通信密碼不被日本破譯,那么李鴻章后去日本談判時(shí)就很可能是另外一種結(jié)局,今天也不會(huì)有的問題了。目前世界的密碼系統(tǒng)大都采用單項(xiàng)數(shù)學(xué)函數(shù)的方式,應(yīng)用了因數(shù)分解等數(shù)學(xué)原理,例如目前網(wǎng)絡(luò)上常用的密碼算法。秀爾提出的量子算法利用量子計(jì)算的并行性,能輕松破解以大數(shù)因式分解算法為根基的密碼體系。量子算法中,量子搜尋算法等也能分分鐘攻破現(xiàn)有密碼體系??烧f量子這種技術(shù)在現(xiàn)代軍事上的意義不亞于核彈。但同時(shí),量子信息技術(shù)也將發(fā)展出一種理論上永遠(yuǎn)無法破譯的密碼——量子密碼。
保密通信分為加密、接收、解密三個(gè)過程,密鑰的保密和不被破解至為關(guān)鍵。量子密碼采用量子態(tài)作為密鑰,是不可復(fù)制的,至少在理論上是無破譯的可能。量子通信是用量子態(tài)的微觀粒子攜帶的量子信息作為加密和解密用的密鑰,其密鑰安全性不再由數(shù)學(xué)計(jì)算,而是由微觀粒子所遵循的物理規(guī)律來保證,竊密者只有突破物理法則才有可能盜取密鑰(根據(jù)海森堡的測(cè)不準(zhǔn)原理,任何測(cè)量都無法窮盡量子的所有信息)。而且量子通信中,量子糾纏態(tài)(有共同來源的兩個(gè)粒子存在著糾纏關(guān)系,似有“心靈感應(yīng)”,無論距離多遠(yuǎn),一個(gè)粒子的狀態(tài)發(fā)生變化,另一個(gè)粒子也發(fā)生變化,速度遠(yuǎn)遠(yuǎn)超過光速,一旦受擾即不再糾纏。愛因斯坦稱這種發(fā)生機(jī)理至今未解的量子糾纏為“幽靈般的超距作用”)被用于傳輸和保證信息安全,使任何竊密行為都會(huì)擾亂傳送密鑰的量子狀態(tài),從而留下痕跡。
量子力學(xué)誕生于1926年,是人類對(duì)微觀世界加以認(rèn)識(shí)的理論基礎(chǔ)之一。量子力學(xué)和相對(duì)論之間的不相容性在1935年被愛因斯坦、波多爾基斯和羅森論證后,約翰•貝爾于1964年提出貝爾理論,,阿斯派克等人于1982年證明了超光速響應(yīng)的存在。1989年第一次演示成功量子密鑰傳輸,1997年量子態(tài)隱形傳輸?shù)脑硇詫?shí)驗(yàn)驗(yàn)證由奧地利蔡林格小組在室內(nèi)首次完成,2004年,該小組又將量子態(tài)隱形傳輸距離成功提高到600米。2007年開始我國(guó)架設(shè)了長(zhǎng)達(dá)16公里的自由空間量子信道,于2009年成功實(shí)現(xiàn)世界上量子隱形傳態(tài)的最遠(yuǎn)距離。
二、量子通信技術(shù)的發(fā)展趨勢(shì)
量子通信技術(shù)的研究方向除了包括量子隱形傳態(tài)還包括量子安全直接通信等,突破了現(xiàn)有信息技術(shù),引起了學(xué)術(shù)界和社會(huì)的高度重視。與傳統(tǒng)通信技術(shù)相比,量子通信除具有超強(qiáng)抗干擾能力外且不需對(duì)傳統(tǒng)信道進(jìn)行借助;與此同時(shí)量子通信的密碼被破譯的可能性幾乎沒有,具有較強(qiáng)的保密性;另外,量子通信幾乎不存在線路時(shí)延,傳輸速度很快。量子通信發(fā)展僅僅經(jīng)歷了20年左右,但其發(fā)展卻十分迅猛,目前已經(jīng)被很多國(guó)家和軍方給予高度關(guān)注。
量子通信在國(guó)防和軍事上具有廣闊的應(yīng)用前景,作為量子技術(shù)的最大特征,量子技術(shù)的安全性是傳統(tǒng)加密通信所無可企及的。量子通信技術(shù)的超強(qiáng)保密性,能夠有效保證己方軍事密件和軍事行動(dòng)不被敵方破譯及偵析,在國(guó)防和軍事領(lǐng)域顯示出無與倫比的魅力。另一方面,在破解復(fù)雜的加密算法上,也許現(xiàn)有計(jì)算機(jī)可能需要好幾萬年的時(shí)間,在現(xiàn)實(shí)中是完全無法接受且?guī)缀鯖]有實(shí)用價(jià)值的。但量子計(jì)算機(jī)卻能在幾分鐘內(nèi)將加密算法破解,如果未來這種技術(shù)被投入實(shí)用,傳統(tǒng)的數(shù)學(xué)密碼體制將處于危險(xiǎn)之中,而量子通信技術(shù)則能能夠抵御這種破解和威脅。
在民間通信領(lǐng)域量子通信技術(shù)的應(yīng)用前景也同樣廣闊。中國(guó)科技大學(xué)在2009年對(duì)界上首個(gè)5節(jié)點(diǎn)的全通型量子通信網(wǎng)絡(luò)進(jìn)行組建后,使得實(shí)時(shí)語音量子保密通信被首次實(shí)現(xiàn),城市范圍的安全量子通信網(wǎng)絡(luò)在這種“城域量子通信網(wǎng)絡(luò)”基礎(chǔ)上成為了現(xiàn)實(shí)。
三、總結(jié)
關(guān)鍵詞:自然哲學(xué) 量子革命 系統(tǒng)辯證法
關(guān)于20世紀(jì)科學(xué)革命,有人說只須記住三件事:相對(duì)論、量子革命和混沌學(xué)(系統(tǒng)科學(xué)中最突出的新分支)。正是這三大科學(xué)革命為人類建構(gòu)全新的自然圖景(也就是新穎的自然哲學(xué))作出了決定性的貢獻(xiàn)。這里所謂自然哲學(xué)是指人對(duì)自然的哲學(xué)反思。自然哲學(xué)的中心問題就是基于人與自然的關(guān)系來研究自然本體最一般的性質(zhì)和人類的世界圖景。
一
自然哲學(xué)在哲學(xué)史上有過兩個(gè)全盛時(shí)期(古希臘及近代機(jī)械論),只是在謝林、黑格爾之后衰落了。由于20世紀(jì)三大科學(xué)革命的強(qiáng)大影響,自然哲學(xué)正在當(dāng)代復(fù)興起來,這是十分令人鼓舞的。我們先從三大科學(xué)革命說起。
首先要提到的是相對(duì)論革命對(duì)改造人類世界圖景的貢獻(xiàn)。在1905年的狹義相對(duì)論中,時(shí)空性質(zhì)依賴于參照系等概念是對(duì)“觀察無關(guān)性”的經(jīng)典信念的初次沖擊;1915年的廣義相對(duì)論把引力場(chǎng)(它具有整體全息相關(guān)性)確立為新的“獨(dú)立的實(shí)在”,這是對(duì)牛頓的實(shí)體觀的又一次打擊。接著要論述的是量子革命,它比相對(duì)論革命更為深刻地改變著人類的世界圖景。因?yàn)?925年以后所創(chuàng)建的量子力學(xué)進(jìn)一步使笛卡兒與牛頓以來的主客絕對(duì)二分原則、實(shí)體主義原則乃至嚴(yán)格決定論原則都受到猛烈沖擊。最后要強(qiáng)調(diào)的是系統(tǒng)科學(xué)革命。20世紀(jì)中葉以來近半個(gè)世紀(jì)系統(tǒng)科學(xué)的蓬勃發(fā)展表明,從總體上說,系統(tǒng)自然觀集中體現(xiàn)了當(dāng)代自然圖景的精華,因此系統(tǒng)自然觀幾乎成了當(dāng)代自然科學(xué)的世界圖景的代名詞,貝塔朗菲稱之為“一種新的自然哲學(xué)”。20年代所出現(xiàn)的懷特海的“機(jī)體論哲學(xué)”則是這種自然哲學(xué)之先聲。
當(dāng)代的系統(tǒng)自然觀借助于維納的控制論(1949)、貝塔朗菲的一般系統(tǒng)論(1948)、普利高津的耗散結(jié)構(gòu)論(1969)和哈肯的協(xié)同學(xué)(1971)等理論復(fù)活了亞里士多德的機(jī)體論和內(nèi)在目的論的自然哲學(xué)?!?〕控制論通過對(duì)“動(dòng)物(即生命系統(tǒng))和機(jī)器(即非生命系統(tǒng))的通用規(guī)律”的研究表明,自動(dòng)機(jī)器通過反饋調(diào)節(jié)機(jī)制可以表現(xiàn)出與神經(jīng)控制同樣的合目的性或規(guī)律。[1]維納在《控制論》中對(duì)牛頓的嚴(yán)格決定論進(jìn)行了深刻有力的批判,肯定了統(tǒng)計(jì)力學(xué)家吉布斯把偶然性引進(jìn)到科學(xué)中來的重大的方法論意義,并突破了目的論與機(jī)械論之間的兩極對(duì)立。莫諾在《偶然性與必然性——略論現(xiàn)代生物學(xué)的自然哲學(xué)》(1971)一書中,則用生物微觀控制論表明,借助于生物化學(xué)和分子生物學(xué)層次的反饋機(jī)制以及微觀-宏觀相互作用,完全偶然的基因突變最終可以納入物種進(jìn)化的必然軌道;耗散結(jié)構(gòu)論表明,在遠(yuǎn)離平衡態(tài)條件下開放系統(tǒng)可以通過非線性正反饋機(jī)制的作用表現(xiàn)出有序化和合目的性;協(xié)同學(xué)還進(jìn)一步發(fā)現(xiàn)序參量是整個(gè)自組織過程的主宰如此等等。總之,所有這些自動(dòng)機(jī)器和自組織理論都表明,無須超自然的神力和神秘的“生命力”,自然系統(tǒng)也象自動(dòng)機(jī)一樣可以憑借內(nèi)在機(jī)制的作用呈現(xiàn)合目的性。從這個(gè)特定意義上說,認(rèn)為宇宙=巨大的超級(jí)自動(dòng)機(jī)的“機(jī)械論”是對(duì)的,而非神學(xué)性的宇宙“內(nèi)在目的論”也是對(duì)的。從歷史上看,牛頓的機(jī)械論自然哲學(xué)是對(duì)亞里士多德的目的論自然哲學(xué)的否定?,F(xiàn)在,我們的立足于系統(tǒng)科學(xué)的新自然哲學(xué)則應(yīng)看作一種“否定之否定”。它是對(duì)機(jī)械論與目的論自然哲學(xué)的更高的辯證綜合。
當(dāng)代自然哲學(xué)(它以系統(tǒng)自然觀及其系統(tǒng)辯證法為核心或靈魂)最有革命性的一個(gè)方面,也許表現(xiàn)在反嚴(yán)格決定論和對(duì)偶然性客觀意義的新認(rèn)識(shí)。直到現(xiàn)在為止,一般人都相信“近似決定論”:只要近似知道一個(gè)系統(tǒng)的運(yùn)行規(guī)律和初始條件就可以足夠好地計(jì)算出系統(tǒng)的近似行為??墒腔煦鐚W(xué)中著名的“蝴蝶效應(yīng)”,即系統(tǒng)演化進(jìn)程對(duì)初始條件的敏感依賴性,卻斷然否決了牛頓-拉普拉斯決定論的任何翻版(如“近似決定論”)的有效性。美國(guó)氣象學(xué)家洛侖茲在1961年發(fā)現(xiàn),實(shí)際上長(zhǎng)期天氣預(yù)報(bào)是不可能的。因?yàn)榧词箤?duì)于嚴(yán)格確定的氣象方程組,初始條件的小誤差,也會(huì)導(dǎo)致災(zāi)難性的后果。諸如珞珈山的蝴蝶拍拍翅膀那樣的初始小擾動(dòng),經(jīng)由地球大氣系統(tǒng)中的逐級(jí)放大,最終可能在南美洲引起大風(fēng)暴。這種由決定論引出來的混沌,對(duì)經(jīng)典觀念的打擊是毀滅性的?;煦绺锩訌?qiáng)并深化了量子革命。
通過量子力學(xué)、分子生物學(xué)、協(xié)同學(xué)乃至混沌學(xué)的研究,現(xiàn)代科學(xué)家越來越認(rèn)識(shí)到,偶然性在自然界具有不容忽視的本體論地位,以及研究偶然性的內(nèi)在機(jī)制的重要性。為恩格斯贊同過的黑格爾關(guān)于“必然性自己規(guī)定自己為偶然性,……偶然性又寧可說是絕對(duì)的必然性”(〔2〕,第562—563頁(yè))的辯證論斷,得到最新自然科學(xué)的支持。正如馬克斯·玻恩在《關(guān)于因果與機(jī)遇的自然哲學(xué)》(1951)中所注意到的,量子世界是由因果與機(jī)遇聯(lián)合統(tǒng)治的,其中機(jī)遇是有規(guī)則的。同樣,在哈肯的協(xié)同學(xué)演化方程(如福克-普朗克方程和郎之萬方程)中,決定論力項(xiàng)與隨機(jī)力項(xiàng)是共同起作用的。在混沌理論中,混沌本是由決定論規(guī)律引出的內(nèi)在的無序和不規(guī)則性,然而對(duì)混沌吸引子的相空間圖解研究卻表明,即使混沌也有精細(xì)結(jié)構(gòu),其中機(jī)遇也是有規(guī)則的,偶然性與必然性相互作用的深層非線性機(jī)制是可以認(rèn)識(shí)的。從量子力學(xué)到系統(tǒng)科學(xué)的研究表明,概率統(tǒng)計(jì)定律是比嚴(yán)格決定論定律更好的認(rèn)識(shí)工具,但原有的“大數(shù)定律”與“統(tǒng)計(jì)平均值”等概念對(duì)于描述偶然性已經(jīng)顯得太粗糙了,非線性數(shù)學(xué)該出陣參戰(zhàn)了。因?yàn)槲ㄓ薪柚诜蔷€性數(shù)學(xué)才可能認(rèn)清偶然性起作用的深層結(jié)構(gòu)機(jī)制。
當(dāng)代自然哲學(xué)中的系統(tǒng)整體論思想也是相當(dāng)有革命性的。自從歐幾里得、阿基米德以來,“整體=部分和”的公理已經(jīng)成為背景知識(shí)不可缺少的一部分。這一觀念也是牛頓的機(jī)械論自然哲學(xué)的一個(gè)基本要素(它與實(shí)體主義、還原主義相協(xié)調(diào))。然而,一般系統(tǒng)論中的貝塔朗菲原理“整體不等于各部分簡(jiǎn)單相加的總和”,卻斷然取消了歐幾里得的公理,以整體論取代了機(jī)械論的還原主義。量子力學(xué)中的全域相關(guān)性和粒子物理學(xué)中的新奇現(xiàn)象(“基本”粒子分割到一定限度,將出現(xiàn)“部分大于整體”的佯謬)以及生態(tài)系統(tǒng)的整體關(guān)聯(lián)性(卡普拉《轉(zhuǎn)折點(diǎn)》,1989)都支持貝塔朗菲的系統(tǒng)整體觀。
總之,以現(xiàn)代物理學(xué)與系統(tǒng)科學(xué)為代表的當(dāng)代科學(xué)革命已經(jīng)引起了人類自然圖景的根本變革,人們有理由期待一種浸透著量子力學(xué)辯證法和系統(tǒng)科學(xué)辯證法精神的全新的自然哲學(xué)的出現(xiàn)。
二
現(xiàn)在我們轉(zhuǎn)入當(dāng)代自然哲學(xué)的主要疑難及其可能解法的討論。
鑒于機(jī)械論自然哲學(xué)所遇到的困難,當(dāng)代自然哲學(xué)所要討論的主要問題可以歸結(jié)如下:1.自然本體的性質(zhì)問題。物理實(shí)在究竟是孤立的實(shí)體還是依賴于系統(tǒng)場(chǎng)境的存在?“潛在”是否也是物理實(shí)在的基本形態(tài)之一?究竟是否存在終極實(shí)在?2.物理實(shí)在所遵循的規(guī)律究竟是決定論還是非決定論的?自然系統(tǒng)究竟是必然性還是偶然性所支配的?偶然性應(yīng)當(dāng)具有怎么樣的本體論地位(是否應(yīng)當(dāng)有)?3.所謂“觀察者侵入物理事件”的實(shí)質(zhì)是什么?主客二分的合理界限是什么?4.系統(tǒng)整體論與還原主義孰是孰非?5.目的論的新解釋問題。自然系統(tǒng)本身能有目的性嗎?能代替上帝作為選擇主體的地位嗎?目的論是否真與機(jī)械論勢(shì)不兩立?它又如何與神學(xué)劃清界線?下面我們將依次詳細(xì)分析這些問題:
1.自然本體或物理實(shí)在的性質(zhì)問題。
牛頓機(jī)械論自然哲學(xué)的本體論或?qū)嵲谟^的要害就在于實(shí)體主義。一切物理實(shí)在被認(rèn)為都有實(shí)體性、實(shí)存性,自然被等同于實(shí)體的集合(簡(jiǎn)單相加的總和),一種在絕對(duì)空間構(gòu)架中的機(jī)械性的存在物。然而,在新的原子科學(xué)中,從前認(rèn)為不容置疑的“實(shí)體實(shí)存”原則已經(jīng)失效。明確的電子“軌道”或光子“路徑”等經(jīng)典性觀念在量子力學(xué)中是不允許的。電子實(shí)際上以“電子云”方式存在著,它并沒有絕對(duì)分明的輪廓,而且只是或然地顯現(xiàn)出來。如“測(cè)不準(zhǔn)關(guān)系”所要求的,電子的位置與相應(yīng)的動(dòng)量具有天生的不確定性,決不可能同時(shí)有確定的值,因而人們決不可能同時(shí)測(cè)量到其確定的值。所有這些事實(shí),如果從牛頓的經(jīng)典本體論的眼光來看簡(jiǎn)直是不可理解的,因?yàn)椤皾撛谛浴庇^念完全沒有地位。
實(shí)際上,現(xiàn)代物理學(xué)家海森伯在批判牛頓機(jī)械論實(shí)在觀的基礎(chǔ)上,確實(shí)發(fā)展了一種全新的、更廣義的“潛在”實(shí)在觀。他根據(jù)量子力學(xué)事實(shí)總結(jié)出,潛在是介于可能與現(xiàn)實(shí)之間的物理實(shí)在的新型式,它被認(rèn)為特別適用于微觀客體。海森伯尖銳地指出:“在量子論中顯示的實(shí)在概念的變化,并不是過去的簡(jiǎn)單的繼續(xù),而卻象是現(xiàn)代科學(xué)結(jié)構(gòu)的真正破裂?!保ā?〕,第2頁(yè))“幾率波的概念是牛頓以來理論物理學(xué)中全新的東西。……它是亞里士多德哲學(xué)中‘潛在’(potentia)這個(gè)老概念的定量表述。它引入了某種介乎實(shí)際的事件和事件的觀念之間的東西,這是正好介乎可能性和實(shí)在性之間的一種新奇的物理實(shí)在。”(〔3〕,第11頁(yè))“事件并不一定是確定的,而是可能發(fā)生或傾向于發(fā)生的事情便構(gòu)成了宇宙中的實(shí)在”。(〔4〕,第177頁(yè))
總之,海森伯認(rèn)為量子理論意味著實(shí)在觀念的革命,牛頓機(jī)械論的實(shí)在觀念已經(jīng)失效。他舉例說,幾率波、量子態(tài)、電子軌道等都與統(tǒng)計(jì)期望值相關(guān)聯(lián),表示傾向性的、潛在的物理實(shí)在,這是物理實(shí)在的新形式。
現(xiàn)代粒子物理學(xué)的新假說把潛在性觀念發(fā)展到海森伯本人始料所不及的程度。喬弗利·丘(Geoffrey Chew)著名的粒子靴絆學(xué)說[2],斷然否定了終極實(shí)體的可能性,揭示了自然本體的自助的、生成的本性。按照我的看法,它使系統(tǒng)實(shí)在論與系統(tǒng)辯證法完全本體論化了!由于任何粒子都可以充當(dāng)基礎(chǔ)粒子,用以構(gòu)成其他粒子,因此說穿了沒有任何一種粒子是真正的“基本粒子”,這就是所謂“基本粒子并不基本”。從根本上說,自然界不可能還原到任何一種或幾種終極的實(shí)體。說一個(gè)質(zhì)子可以由中子和π介子所構(gòu)成,或者說它是由Λ超子和K介子所構(gòu)成,或者說它是由兩個(gè)核子和一個(gè)反核子所構(gòu)成,甚至說是由場(chǎng)的連續(xù)質(zhì)所構(gòu)成。所有這一切可能性是同樣真實(shí)地存在的。應(yīng)當(dāng)說,所有這些陳述都同樣地正確又同樣地不完善。因?yàn)檎鎸?shí)世界等于所有這些潛在的“可能世界”互相疊加的總和。借用日本物理學(xué)家武谷三男的話來說:“作為終極要素的實(shí)體——基本粒子本身也是相互流動(dòng)地相互轉(zhuǎn)化的。這件革了以前的物質(zhì)觀,顯示了辯證邏輯的正確性?!保ā?〕,第28頁(yè))
我們的進(jìn)一步的問題是:作為自然本體的物理實(shí)在究竟是否可以歸結(jié)為互相孤立的實(shí)體?還是從本質(zhì)上說只能是依賴系統(tǒng)場(chǎng)境的整體全息相關(guān)的存在?在對(duì)著名的EPR假想[3]的實(shí)驗(yàn)檢驗(yàn)中所表現(xiàn)出來的量子關(guān)聯(lián)(即遠(yuǎn)距粒子之間的整體相關(guān)性)很好地回答了這一問題。正如美國(guó)科學(xué)哲學(xué)家西莫尼(A.Shimony)所指出:“我們生活在一個(gè)實(shí)驗(yàn)結(jié)果正在開始闡明哲學(xué)問題的非凡時(shí)代”。而今最新實(shí)驗(yàn)結(jié)果表明,兩個(gè)相隔幾米且又沒有彼此傳遞信息機(jī)制的實(shí)體可能被相互糾結(jié)在一起,即它們的行為可以有極顯著的相關(guān)性,以致對(duì)其中一個(gè)實(shí)體進(jìn)行測(cè)量將瞬時(shí)地影響到另一個(gè)實(shí)體的測(cè)量結(jié)果。這個(gè)新奇的實(shí)驗(yàn)結(jié)果斷然否定了愛因斯坦等人(EPR)的預(yù)設(shè)(即“空間上遠(yuǎn)隔的客體的實(shí)在狀態(tài)必定是彼此獨(dú)立的”),卻符合量子力學(xué)的系統(tǒng)整體觀。正如玻爾所注意到的,量子現(xiàn)象是作為整體而存在的,其中所反映出來的內(nèi)在關(guān)聯(lián)是不可消解的。量子現(xiàn)象的整體性不允許人們對(duì)它作機(jī)械的切割并把這種切割物認(rèn)作它自身。因此我們有理由說,量子力學(xué)的整體實(shí)在觀是與系統(tǒng)整體觀相通的,量子辯證法與系統(tǒng)辯證法相互滲透,量子革命與系統(tǒng)科學(xué)革命相互支持。因此,作為科學(xué)革命的結(jié)晶,新自然哲學(xué)主張,物理實(shí)在的部分性質(zhì)取決于整體,取決于系統(tǒng)的內(nèi)在關(guān)聯(lián),從根本上說,自然本體是整體全息相關(guān)的存在。
2.決定論與非決定論疑難,偶然性的本體論地位問題。
從前認(rèn)為不容置疑的機(jī)械論自然哲學(xué)的“嚴(yán)格決定論”預(yù)設(shè),如今在新的原子科學(xué)中也已經(jīng)失效。人們向來認(rèn)為,自然科學(xué)和“自然科學(xué)唯物主義”有一個(gè)不可動(dòng)搖的支柱:這就是嚴(yán)格決定論。對(duì)自然科學(xué)的這種見解,最典型地表現(xiàn)在拉普拉斯杜撰的那個(gè)精靈故事中,據(jù)說這個(gè)精靈(超智慧者)知道世界現(xiàn)況的一切決定因素,因而能夠無歧義地得出世界在過去或未來的其他一切狀態(tài)。這個(gè)被后人稱作“拉普拉斯妖”的理想實(shí)驗(yàn)正是嚴(yán)格決定論的化身。可是,現(xiàn)在在微觀領(lǐng)域里發(fā)現(xiàn)了與這種嚴(yán)格決定論原則相違背的種種反常事實(shí)。簡(jiǎn)略地說,熱學(xué)與分子物理學(xué)的研究表明,氣體分子運(yùn)動(dòng)是包含不確定性的自然進(jìn)程,由于初始條件捉摸不定,單個(gè)分子的運(yùn)動(dòng)狀態(tài)成為純粹的偶然事件。分子運(yùn)動(dòng)論乃至統(tǒng)計(jì)力學(xué)的建立表明,概率統(tǒng)計(jì)定律也是自然描述不可缺少的一種基本形式。
強(qiáng)調(diào)概率統(tǒng)計(jì)定律重要性的科學(xué)思想反映到自然哲學(xué)中去,就成為“統(tǒng)計(jì)決定論”。其要旨可概括如下:對(duì)于一些包含不確定性的自然過程,雖然嚴(yán)格決定論不能直接應(yīng)用,但若應(yīng)用統(tǒng)計(jì)方法研究大量單個(gè)偶然事件的平均行為,卻可以找出明顯的統(tǒng)計(jì)規(guī)律性。換句話說,這些自然過程在統(tǒng)計(jì)平均意義上仍是決定論性的。這是決定論的弱化形式之一。
統(tǒng)計(jì)決定論的科學(xué)基礎(chǔ)在于經(jīng)典統(tǒng)計(jì)力學(xué)。統(tǒng)計(jì)力學(xué)的基本出發(fā)點(diǎn)則在于,認(rèn)為盡管大量分子的集團(tuán)行為滿足統(tǒng)計(jì)規(guī)律,但從底層基礎(chǔ)而言,單個(gè)分子(單個(gè)過程)仍遵守牛頓定律,滿足嚴(yán)格決定論。這樣,統(tǒng)計(jì)決定論并不把不確定性歸因于基礎(chǔ)規(guī)律的不同,而是把它歸因于初始條件的難以捉摸(即人類知識(shí)的不完備性)。因此,統(tǒng)計(jì)決定論只是嚴(yán)格決定論的補(bǔ)充形式。
然而,將概率統(tǒng)計(jì)觀點(diǎn)真正貫徹到底,最終導(dǎo)致量子物理學(xué)的興起,而測(cè)不準(zhǔn)關(guān)系的發(fā)現(xiàn)則使嚴(yán)格決定論淪為無意義的空想。
在現(xiàn)代科學(xué)家中第一個(gè)對(duì)“非完全決定論”(即under-determinism,這個(gè)詞的不恰當(dāng)?shù)奶娲~是indeterminism,即非決定論)有十分清醒認(rèn)識(shí)的是哥廷根學(xué)派的馬克斯·玻恩。他在名著《關(guān)于因果和機(jī)遇的自然哲學(xué)》中對(duì)非完全決定論作了比其他量子物理學(xué)家(如玻爾、海森伯等)更為系統(tǒng)和透徹的分析。通過對(duì)玻恩文本的適當(dāng)解釋、調(diào)整與轉(zhuǎn)譯,我們可以提煉出對(duì)當(dāng)代自然哲學(xué)極有價(jià)值的內(nèi)容和決定論/非決定論問題的辯證解。〔7〕
非完全決定論的最主要或最有特色的一種表現(xiàn)形式,是與量子力學(xué)相應(yīng)的概率決定論。其要點(diǎn)如下:(1)單個(gè)(量子)過程內(nèi)在地是幾率性的、非決定性質(zhì)的;(2)“自然界同時(shí)受到因果律和機(jī)遇律的某種混合方式的支配?!保ā?〕,第9頁(yè))(3)機(jī)遇律是自然律的終極形式,偶然性有規(guī)則,“它們是用數(shù)學(xué)上的概率論表述出來的?!保ā?〕,第7頁(yè))
關(guān)于自然界究竟是由必然性還是偶然性所支配的,是決定論性還是非決定論性的那個(gè)爭(zhēng)論,波普有一個(gè)著名的比喻:“云和鐘”?!霸啤本褪翘焐系脑?,代表極端不確定性,它非常不規(guī)則、毫無秩序又有點(diǎn)難以預(yù)測(cè);“鐘”就是家家都有的時(shí)鐘,代表高度的確定性,它非常有規(guī)則、有秩序又是高度可預(yù)測(cè)的。這是兩個(gè)不同的極端,一端變化莫測(cè),另一端高度精確。一般的自然事物往往處在這兩個(gè)極端之間。波普用“所有的云都是鐘”(當(dāng)然也可以說“所有自然事物都是鐘”)表示決定論,用“所有的鐘都是云”(當(dāng)然也可以說“所有自然事物都是云”)表示非決定論。波普終于認(rèn)識(shí)到,人類理性需要的是“處于完全的偶然性和完全的決定論之間的某種中間物,即處于完全的云和完善的鐘之間的某種中間物?!保ā?〕,第239—240頁(yè))這種完全的偶然論(非決定論)和完全的決定論的中間物,我們可以恰當(dāng)?shù)胤Q作“非完全決定論”,它意味著對(duì)偶然性與必然性、因果與機(jī)遇的某種辯證綜合,這就是當(dāng)代自然哲學(xué)對(duì)這一爭(zhēng)論所作的正確解。以上我們是借用M.玻恩與波普的話,經(jīng)校正、轉(zhuǎn)譯納入自己的概念框架,并用以闡發(fā)自己的“非完全決定論”觀點(diǎn)。〔7〕
現(xiàn)代生物學(xué)和生物微觀控制論也為非完全決定論提供新的佐證。莫諾在其名著《偶然性與必然性(略論現(xiàn)代生物學(xué)的自然哲學(xué))》中,從分子生物學(xué)的材料出發(fā),有力地抨擊了嚴(yán)格決定論,并為恢復(fù)偶然性在自然哲學(xué)中的本體論地位付出極大的努力。莫諾是這樣說的:
當(dāng)偶然事件——因?yàn)樗偸仟?dú)一無二的,所以本質(zhì)上是無法預(yù)測(cè)的——一旦摻入了DNA的結(jié)構(gòu)之中,就會(huì)被機(jī)械而忠實(shí)地進(jìn)行復(fù)制和轉(zhuǎn)錄,……從純粹偶然性的范圍中被延伸出來以后,偶然性事件也就進(jìn)入了必然性的范圍,進(jìn)入了相互排斥、不可調(diào)和的確定性的范圍了。因?yàn)樽匀贿x擇就是在宏觀水平上、在生物體的水平上起作用的。自然選擇能夠獨(dú)自從一個(gè)噪聲源泉中譜寫出生物界的全部樂曲。(著重號(hào)為引者所加)(〔9〕,第88頁(yè))
莫諾這段話應(yīng)當(dāng)看作關(guān)于生物自然界的非完全決定論,關(guān)于極小幾率的偶然事件向極嚴(yán)格規(guī)律轉(zhuǎn)化過程的生動(dòng)說明。特別是最后那句話是說明生物界的偶然性與必然性的相互聯(lián)系、相互作用方式的絕妙比喻。當(dāng)然,由于莫諾有時(shí)十分不恰當(dāng)?shù)貙?yán)格決定論與辯證唯物論混為一談,應(yīng)當(dāng)注意他的言論本身具有兩重性。(〔10〕,第324頁(yè))
非完全決定論的內(nèi)容還由于系統(tǒng)科學(xué)的興起而得到了進(jìn)一步豐富和加強(qiáng)。有人因之稱作系統(tǒng)決定論。其要旨可概括如下:
一般的自然界的復(fù)雜系統(tǒng)(在自然哲學(xué)中姑且撇開社會(huì)系統(tǒng)),不能由它的構(gòu)成要素和子系統(tǒng)通過簡(jiǎn)單相加和線性因果鏈無歧義地決定其整體功能和行為。但系統(tǒng)的存在與演化仍有相當(dāng)確定的規(guī)律可循,機(jī)遇與因果共同決定著系統(tǒng)的存在和發(fā)展,因而系統(tǒng)在整體上仍有決定性。
具體地說,系統(tǒng)演化的主要機(jī)理就在于機(jī)遇性漲落、反饋和非線性作用。人們常喜歡將借助于系統(tǒng)科學(xué)特有的資料所認(rèn)識(shí)的辯證法,稱作“系統(tǒng)辯證法”。系統(tǒng)科學(xué)從自己的角度闡明了因果與機(jī)遇、決定性與隨機(jī)性的辯證法:自組織系統(tǒng)作為遠(yuǎn)離平衡態(tài)的開放系統(tǒng),以偶然的隨機(jī)的漲落為誘導(dǎo),通過正反饋和非線性放大,某一漲落在矛盾競(jìng)爭(zhēng)之中取得支配地位,成為序參量,于是使系統(tǒng)的演化納入必然的軌道,建立時(shí)空、功能上的新的有序狀態(tài)。系統(tǒng)辯證法與矛盾辯證法在自組織動(dòng)力學(xué)機(jī)制的解釋上是高度一致的:當(dāng)自組織系統(tǒng)處于不穩(wěn)定點(diǎn)時(shí),系統(tǒng)內(nèi)部矛盾全面展開并有所激化,與各種子系統(tǒng)及其要素的局部耦合關(guān)系和運(yùn)動(dòng)特性相聯(lián)系的模式和參量都異常活躍,各種參量的漲落此起彼伏,它們都蘊(yùn)含著一定的結(jié)構(gòu)與組織的胚芽,為了建立自己的獨(dú)立模式并爭(zhēng)奪對(duì)全局的支配權(quán),它們之間進(jìn)行激烈的競(jìng)爭(zhēng)與對(duì)抗,時(shí)而“又聯(lián)合又斗爭(zhēng)”,最后才選拔出作為主導(dǎo)模式的序參量。非完全決定論在協(xié)同學(xué)的描述系統(tǒng)演化的數(shù)學(xué)方程中也得到反映。如郎之萬方程(描述布朗運(yùn)動(dòng)的)和福克-普朗克方程中,概率論描述與因果性描述共處于一體,隨機(jī)作用項(xiàng)與決定論作用項(xiàng)被綜合在一起,偶然性與必然性因子被綜合在一起。從自然哲學(xué)看,它們體現(xiàn)了機(jī)遇律與因果律的辯證綜合。
3.物理事件與觀察的關(guān)系、主體-客體相互作用問題。
從前認(rèn)為不容置疑的“客觀事件與任何觀測(cè)無關(guān)”的自然哲學(xué)信條,如今在新的原子科學(xué)中同樣也正在失效。正如海森伯所指出,經(jīng)典物理學(xué)的真正核心,也就是物理事件在時(shí)間、空間上的客觀進(jìn)程與任何觀測(cè)無關(guān)的信念,由于許多量子實(shí)驗(yàn)的發(fā)現(xiàn)而受到?jīng)_擊。而現(xiàn)代物理學(xué)的真正力量就存在于自然界為我們提供的那些新的思想方法之中。因此,再指望用新實(shí)驗(yàn)去發(fā)現(xiàn)與觀測(cè)無關(guān)的“純客觀事件”或不依賴于觀察者和相關(guān)參照系的“絕對(duì)時(shí)間”,就無異于指望極地探險(xiǎn)家在南極圈尚未勘查過的地方會(huì)發(fā)現(xiàn)“世界盡頭”,那只能是不切實(shí)際的幻想。(〔4〕,第4頁(yè)和第9頁(yè))對(duì)原子、電子那樣的客體的任何一次射線照射或觀測(cè)都足以破壞其初始狀態(tài),而且由于或然性和不可逆性,這種狀態(tài)不可恢復(fù)。
玻爾為量子力學(xué)所作的“互補(bǔ)性詮釋”中一個(gè)最基本的思想是:觀察者(主體)與被觀察者(客體)之間的嚴(yán)格劃界是不可能的,因?yàn)樵趯?shí)際過程中兩者處在緊密相連的相互作用之中。無論是純粹的“主體”即可以)“無干擾”地進(jìn)行觀察的觀察者)或是純粹的“客體”(可以絕對(duì)隔絕外界作用而界定被觀察系統(tǒng)的孤立狀態(tài))概念都只是經(jīng)典物理學(xué)所作的理想化,而這兩種理想化既是相互補(bǔ)充又是相互排斥的?!?1〕這就是玻爾著名的“我們既是觀眾(觀察者),又是演員(被觀察者)”辯證論斷的真實(shí)含義。
實(shí)際上,從當(dāng)代自然哲學(xué)的眼光看,這是很自然的:人(觀察者)本來就是自然(被觀察者)不可分割的一部分,我們只能用一種內(nèi)在化的眼光來看待自然,而不可能象上帝那樣用完全超脫的外在化眼光看自然,這就是問題的癥結(jié)所在。
正如羅森菲爾德所指出,所謂“觀察者介入原子事件進(jìn)程”的局勢(shì),容易產(chǎn)生科學(xué)事實(shí)的客觀性被敗壞的假象,因此我們必須與機(jī)械論和不可救藥的唯心主義劃清界線。羅森菲爾德本人正是以辯證法為武器在與機(jī)械論和唯心主義劃界的過程中闡明了觀察者與物理事件的辯證關(guān)系的客觀性質(zhì)。(〔12〕,第140頁(yè))海森伯說得很分明:“量子論并不包含真正的主觀特征,它并不引進(jìn)物理學(xué)家的精神作為原子事件的一部分”。(〔3〕,第22頁(yè))可見,“客體行為與觀測(cè)有關(guān)”原則并不意味著我們可以拋棄客觀實(shí)在而接受主觀主義。
4.系統(tǒng)整體實(shí)在觀問題。在闡述以上各個(gè)問題的過程中,我們實(shí)際上已經(jīng)闡明了整體實(shí)在觀的基本觀點(diǎn):“整體不同于各部分機(jī)械相加的總和”。自然本體是依賴于系統(tǒng)場(chǎng)境的存在、處在相對(duì)相關(guān)中的存在,是整體全息相關(guān)的實(shí)在。正如D.玻姆所指出的,按照量子概念,世界是作為統(tǒng)一的不可分割的整體而存在的,其中即使是每個(gè)部分內(nèi)在的性質(zhì)(波或粒子)也在一定程度上依賴于場(chǎng)境。其實(shí),人本身就是自然的產(chǎn)物,自然不可分割的一部分,人只能作為參與者并在相互作用過程中用內(nèi)在化的觀點(diǎn)來理解自然本體。只是在系統(tǒng)及其諸要素之間的相互作用可以忽視的情況下,還原主義才是近似地有效的。
5.自然本體目的性的(自組織解釋)問題。簡(jiǎn)單地說,當(dāng)代自然哲學(xué)的目的論觀是亞里士多德內(nèi)在目的論的復(fù)活和發(fā)展,是現(xiàn)代系統(tǒng)科學(xué)目的論觀的升華。宇宙象是一個(gè)有機(jī)統(tǒng)一的整體,自然系統(tǒng)(包括生命系統(tǒng)和非生命自組織系統(tǒng))的結(jié)構(gòu)、功能和演化過程的合目的性可以通過自然本身的自組織機(jī)制的作用得到合理解釋?!?〕
例如,自然選擇的實(shí)質(zhì)問題是由生物哲學(xué)所提出的一個(gè)重要問題。按照生物控制論的初步解答,關(guān)于生物進(jìn)化的自然選擇機(jī)制實(shí)質(zhì)上就是一種以偶然的突變?yōu)樗夭?,通過反饋調(diào)節(jié)的最優(yōu)化控制機(jī)制。艾根的超循環(huán)理論則進(jìn)一步明確,在大分子的自組織階段,在生化反應(yīng)的超循環(huán)中選擇價(jià)值高的突變不斷通過過濾和正反饋放大,形成功能性的組織,強(qiáng)化、優(yōu)化并向更高水平進(jìn)化。這里,一方面自然選擇表現(xiàn)為自然本身的純物質(zhì)性的有規(guī)則的相互作用過程,但它不同于牛頓的機(jī)械因果性模式,因?yàn)槠渲型蛔兣c選擇機(jī)制、機(jī)遇與因果是辯證地聯(lián)合起作用的;另一方面,盡管它排除了自然神力的干預(yù),卻仍然是合目的性的過程,因?yàn)樗凶砸龑?dǎo)的、自動(dòng)調(diào)節(jié)的功能(使物種或分子擬種適應(yīng)環(huán)境)。這樣,按系統(tǒng)辯證法重新解釋過的合理的目的論又能與神學(xué)劃清界線。
三
正如我們已經(jīng)看到的,20世紀(jì)早期的相對(duì)論量子論革命向統(tǒng)治思想界長(zhǎng)達(dá)二三百年之久的機(jī)械論自然哲學(xué),提出了全面的詰難和挑戰(zhàn),并給予毀滅性的打擊。當(dāng)代自然哲學(xué)正是在克服舊自然哲學(xué)的危機(jī),在回答新興自然科學(xué)所提出的詰難和挑戰(zhàn)的過程中逐步建立起來的。20世紀(jì)中葉以來以系統(tǒng)科學(xué)群為代表的新興科學(xué)的迅速發(fā)展,豐富了當(dāng)代自然哲學(xué)的內(nèi)涵,加速了人類自然圖景革新的步伐。
總起來說,當(dāng)代自然哲學(xué)的核心觀點(diǎn),可以簡(jiǎn)要地重新概括如下:
1.自然本體是依賴于系統(tǒng)場(chǎng)境的、在關(guān)系中生成的、流動(dòng)的實(shí)在,作為孤立實(shí)體的終極實(shí)在根本不存在,“潛在”是物理實(shí)在的一種新形式;2.自然系統(tǒng)遵循非完全決定論(即決定論與非決定論的中間物),它是由因果與機(jī)遇聯(lián)合統(tǒng)治的,此兩者互斥又互補(bǔ)。偶然性的本體論地位是:它是自然本體本質(zhì)中的一個(gè)規(guī)定、一個(gè)方面和一個(gè)要素。偶然性存在精細(xì)的非線性作用機(jī)制(由混沌革命所發(fā)現(xiàn)!)。3.物理事件與觀測(cè)有關(guān),人作為自然系統(tǒng)的一分子只能用參與者的身分和內(nèi)在化的觀點(diǎn)來觀察自然,絕對(duì)的主客二分只是不切實(shí)際的幻想;4.系統(tǒng)整體觀在總體上比還原主義更為合理,不過為了進(jìn)行精細(xì)的研究,有節(jié)制的還原主義仍是必不可少的和有啟發(fā)力的,兩者其實(shí)是互斥又互補(bǔ)的。5.自然系統(tǒng)的合目的性可以按自組織觀點(diǎn)得到最合理的解釋,目的論與機(jī)械論也是互斥又互補(bǔ)的。
最后,我們所要強(qiáng)調(diào)的是偶然性的恰當(dāng)?shù)谋倔w論地位問題。迄今仍有不少讀者受過時(shí)的哲學(xué)教科書的影響,把偶然性當(dāng)作一種外在的、主觀的、局部的、非本質(zhì)的和不穩(wěn)定的或暫時(shí)的東西。其實(shí)這種看法有違辯證法的本意,可以毫不客氣地說它屬于機(jī)械論的范疇。通過對(duì)量子辯證法與系統(tǒng)辯證法的研究,我們可以十分有把握地說:機(jī)遇或偶然性在本體論中恰恰是一種內(nèi)在的、固有的、普遍的、本質(zhì)的和永久性的成分。借用列寧論“假象”的話來說,偶然性是“本質(zhì)的一個(gè)規(guī)定、一個(gè)方面和一個(gè)環(huán)節(jié)”,是“本質(zhì)自身在自身中的表現(xiàn)”。機(jī)遇與偶然性是客觀的并且具有自己的非常獨(dú)特的規(guī)律。在新自然哲學(xué)中,我們不能再滿足于把偶然性看作必然性的“補(bǔ)充形式”的外在化理解,而要比以往任何時(shí)候都更加清醒地認(rèn)識(shí)到,機(jī)遇與因果相互聯(lián)結(jié)、相互滲透,辯證地融為一體。在非完全決定論中,偶然性恢復(fù)了它本來應(yīng)有的本體論地位,機(jī)遇與因果,偶然性與必然性以幾率或統(tǒng)計(jì)性乃至“混沌吸引子”為中介辯證地聯(lián)結(jié)在一起。在相空間中混沌吸引子的精巧的無窮嵌套的自相似結(jié)構(gòu),精確而形象地展示出系統(tǒng)演化過程中機(jī)遇與因果如何聯(lián)合起作用的深層非線性機(jī)制,進(jìn)一步豐富了對(duì)自然本體辯證內(nèi)涵的認(rèn)識(shí)。
應(yīng)當(dāng)說,這是量子辯證法與系統(tǒng)辯證法對(duì)矛盾辯證法的一項(xiàng)貢獻(xiàn),它們本應(yīng)是相得益彰的。
參考文獻(xiàn)
〔1〕桂起權(quán):《目的論自然哲學(xué)之復(fù)活》,載“自然辯證法研究”1995(7),并收入?yún)菄?guó)盛主編《自然哲學(xué)》一書,中國(guó)社科出版社1994年版。
〔2〕《馬克思恩格斯全集》第20卷。
〔3〕海森伯:《物理學(xué)與哲學(xué)》商務(wù)印書館1984年版。
〔4〕海森伯:《嚴(yán)密自然科學(xué)基礎(chǔ)近年來的變化》上海譯文出版社1978年版。
〔5〕《武谷三男物理學(xué)方法論論文集》商務(wù)印書館1975年版。
〔6〕波普:《客觀知識(shí)》,上海譯文出版社1987年版。
〔7〕桂起權(quán):《非完全決定論:因果與機(jī)遇的辯證綜合》,載“科學(xué)技術(shù)與辯證法”1991(2)。
〔8〕玻恩:《關(guān)于因果和機(jī)遇的自然哲學(xué)》商務(wù)印書館1964年版。
〔9〕莫諾:《偶然性與必然性(略論現(xiàn)代生物學(xué)的自然哲學(xué))》,上海人民出版社1977年版。
〔10〕桂起權(quán):《科學(xué)思想的源流》武漢大學(xué)出版社1994年版。
〔11〕桂來權(quán)《析量子力學(xué)中的辯證法思想—玻爾互補(bǔ)性構(gòu)架之真諦》,載“哲學(xué)研究”1994(10)。
〔12〕羅森菲爾德:《量子革命》商務(wù)印書館1991年版。
注釋:
[1]正是在這一意義上,梁實(shí)秋在《遠(yuǎn)東英漢大辭典》中,將控制論(cybernetics)譯作神經(jīng)機(jī)械學(xué)。