无码任你躁久久久久久久-激情亚洲一区国产精品-超碰97久久国产精品牛牛-久久se精品一区精品二区国产

有理數(shù)的加法數(shù)學(xué)教案

前言:本站為你精心整理了有理數(shù)的加法數(shù)學(xué)教案范文,希望能為你的創(chuàng)作提供參考價(jià)值,我們的客服老師可以幫助你提供個(gè)性化的參考范文,歡迎咨詢。

教學(xué)目的

1.使學(xué)生掌握有理數(shù)加法法則,并能運(yùn)用法則進(jìn)行計(jì)算;

2.在有理數(shù)加法法則的教學(xué)過程中,注意培養(yǎng)學(xué)生的觀察、比較、歸納及運(yùn)算能力。

教學(xué)分析

重點(diǎn):有理數(shù)加法法則。

難點(diǎn):異號(hào)兩數(shù)相加的法則。

教學(xué)過程

一、復(fù)習(xí)

導(dǎo)課。

師生共同研究有理數(shù)加法法則

前面我們學(xué)習(xí)了有關(guān)有理數(shù)的一些基礎(chǔ)知識(shí),從今天起開始學(xué)習(xí)有理數(shù)的運(yùn)算.這節(jié)課我們來研究?jī)蓚€(gè)有理數(shù)的加法。

兩個(gè)有理數(shù)相加,有多少種不同的情形?

為此,我們來看一個(gè)大家熟悉的實(shí)際問題:

足球比賽中贏球個(gè)數(shù)與輸球個(gè)數(shù)是相反意義的量.若我們規(guī)定贏球?yàn)椤罢保斍驗(yàn)椤柏?fù)”.比如,贏3球記為+3,輸2球記為-2.學(xué)校足球隊(duì)在一場(chǎng)比賽中的勝負(fù)可能有以下各種不同的情形:

(1)上半場(chǎng)贏了3球,下半場(chǎng)贏了2球,那么全場(chǎng)共贏了5球.也就是

(+3)+(+2)=+5.①

(2)上半場(chǎng)輸了2球,下半場(chǎng)輸了1球,那么全場(chǎng)共輸了3球.也就是

(-2)+(-1)=-3.②

現(xiàn)在,請(qǐng)同學(xué)們說出其他可能的情形.

答:上半場(chǎng)贏了3球,下半場(chǎng)輸了2球,全場(chǎng)贏了1球,也就是

(+3)+(-2)=+1;③

上半場(chǎng)輸了3球,下半場(chǎng)贏了2球,全場(chǎng)輸了1球,也就是

(-3)+(+2)=-1;④

上半場(chǎng)贏了3球下半場(chǎng)不輸不贏,全場(chǎng)仍贏3球,也就是

(+3)+0=+3;⑤

上半場(chǎng)輸了2球,下半場(chǎng)兩隊(duì)都沒有進(jìn)球,全場(chǎng)仍輸2球,也就是

(-2)+0=-2;

上半場(chǎng)打平,下半場(chǎng)也打平,全場(chǎng)仍是平局,也就是

0+0=0.⑥

上面我們列出了兩個(gè)有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計(jì)算兩個(gè)有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在我們大家仔細(xì)觀察比較這7個(gè)算式,看能不能從這些算式中得到啟發(fā),想辦法歸納出進(jìn)行有理數(shù)加法的法則?也就是結(jié)果的符號(hào)怎么定?絕對(duì)值怎么算?

這里,先讓學(xué)生思考2~3分鐘,再由學(xué)生自己歸納出有理數(shù)加法法則:

1.同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加;

2.絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值,互為相反數(shù)的兩個(gè)數(shù)相加得0;

3.一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

二、新授

應(yīng)用舉例變式練習(xí)

例1計(jì)算下列算式的結(jié)果,并說明理由:

(1)(+4)+(+7);(2)(-4)+(-7);

(3)(+4)+(-7);(4)(+9)+(-4);

(5)(+4)+(-4);(6)(+9)+(-2);

(7)(-9)+(+2);(8)(-9)+0;

(9)0+(+2);(10)0+0.

學(xué)生逐題口答后,教師小結(jié):

進(jìn)行有理數(shù)加法,先要判斷兩個(gè)加數(shù)是同號(hào)還是異號(hào),有一個(gè)加數(shù)是否為零;再根據(jù)兩個(gè)加數(shù)符號(hào)的具體情況,選用某一條加法法則.進(jìn)行計(jì)算時(shí),通常應(yīng)該先確定“和”的符號(hào),再計(jì)算“和”的絕對(duì)值.

解:(1)(-3)+(-9)(兩個(gè)加數(shù)同號(hào),用加法法則的第2條計(jì)算)

=-(3+9)(和取負(fù)號(hào),把絕對(duì)值相加)

=-12.

三、練習(xí)

下面請(qǐng)同學(xué)們計(jì)算下列各題:

(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9);

全班學(xué)生書面練習(xí),四位學(xué)生板演,教師對(duì)學(xué)生板演進(jìn)行講評(píng).

P73練習(xí):……

四、小結(jié)

1、這節(jié)課我們從實(shí)例出發(fā),經(jīng)過比較、歸納,得出了有理數(shù)加法的法則.今后我們經(jīng)常要用類似的思想方法研究其他問題。

2、應(yīng)用有理數(shù)加法法則進(jìn)行計(jì)算時(shí),要同時(shí)注意確定“和”的符號(hào),計(jì)算“和”的絕對(duì)值兩件事。

五、作業(yè)

1.計(jì)算:

(1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

(4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

(7)33+48;(8)(-56)+37.

2.計(jì)算:

(1)(-0.9)+(-2.7);(2)3.8+(-8.4);

(3)(-0.5)+3;(4)3.29+1.78;

(5)7+(-3.04);(6)(-2.9)+(-0.31);

(7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

3.計(jì)算:

4*.用“>”或“<”號(hào)填空:

(1)如果a>0,b>0,那么a+b______0;

(2)如果a<0,b<0,那么a+b______0;

(3)如果a>0,b<0,|a|>|b|,那么a+b______0;

(4)如果a<0,b>0,|a|>|b|,那么a+b______0.

5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:

(1)a>0,b>0;(2)a<0,b<0;

(3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.1、另:基礎(chǔ)訓(xùn)練:同步練習(xí)。

課堂教學(xué)設(shè)計(jì)說明

“有理數(shù)加法法則”的教學(xué),可以有多種不同的設(shè)計(jì)方案.大體上可以分為兩類:一類是較快地由教師給出法則,用較多的時(shí)間(30分鐘以上)組織學(xué)生練習(xí),以求熟練地掌握法則;另一類是適當(dāng)加強(qiáng)法則的形成過程,從而在此過程中著力培養(yǎng)學(xué)生的觀察、比較、歸納能力,相應(yīng)地適當(dāng)壓縮應(yīng)用法則的練習(xí),如本教學(xué)設(shè)計(jì).

現(xiàn)在,試比較這兩類教學(xué)設(shè)計(jì)的得失利弊.

第一種方案,教學(xué)的重點(diǎn)偏重于讓學(xué)生通過練習(xí),熟悉法則的應(yīng)用,這種教法近期效果較好.

第二種方案,注重引導(dǎo)學(xué)生參與探索、歸納有理數(shù)加法法則的過程,主動(dòng)獲取知識(shí).這樣,學(xué)生在這節(jié)課上不僅學(xué)懂了法則,而且能感知到研究數(shù)學(xué)問題的一些基本方法.

這種方案減少了應(yīng)用法則進(jìn)行計(jì)算的練習(xí),所以學(xué)生掌握法則的熟練程度可能稍差,這是教學(xué)中應(yīng)當(dāng)注意的問題.但是,在后續(xù)的教學(xué)中學(xué)生將千萬(wàn)次應(yīng)用“有理數(shù)加法法則”進(jìn)行計(jì)算,故這種缺陷是可以得到彌補(bǔ)的.第一種方案削弱了得出結(jié)論的“過程”,失去了培養(yǎng)學(xué)生觀察、比較、歸納能力的一次機(jī)會(huì).權(quán)衡利弊,我們主張采用第二種教學(xué)方案.

主站蜘蛛池模板: 轮台县| 北海市| 连南| 平定县| 华池县| 白沙| 阜阳市| 紫云| 肥城市| 元谋县| 铜川市| 枝江市| 成安县| 彭州市| 喀喇| 新巴尔虎右旗| 宁波市| 马龙县| 廊坊市| 淮北市| 东源县| 安岳县| 庄浪县| 鹤庆县| 祁门县| 闻喜县| 调兵山市| 双峰县| 邮箱| 沁水县| 靖宇县| 房产| 澎湖县| 宜君县| 内黄县| 东台市| 竹溪县| 通化市| 黄大仙区| 杂多县| 电白县|