无码任你躁久久久久久久-激情亚洲一区国产精品-超碰97久久国产精品牛牛-久久se精品一区精品二区国产

首頁 > 文章中心 > 正文

高等數(shù)學教學融入數(shù)學建模思想

前言:本站為你精心整理了高等數(shù)學教學融入數(shù)學建模思想范文,希望能為你的創(chuàng)作提供參考價值,我們的客服老師可以幫助你提供個性化的參考范文,歡迎咨詢。

高等數(shù)學教學融入數(shù)學建模思想

【摘要】學習高等數(shù)學的目的在于應用數(shù)學思想方法解決實際問題,本文通過實例表明將數(shù)學建模思想融入高等數(shù)學教學中,可以提高學生應用數(shù)學思想、知識、方法解決實際問題的能力。

【關鍵詞】高等數(shù)學;數(shù)學建模;教學;應用

IntegrationofMathematicsModelingThoughtintheHigherMathematicsTeaching

ZHANGMing1,HUWen-yi2,WANGXia1

(1.DepartmentofBasicsofComputerScience,ChengduMedicalCollege,Chengdu610083,China;2.ChengduUniversityofTechnology,Chengdu610059,China)

Abstract:Thepurposeofstudyinghighermathematicsistosolvepracticalproblemswiththemathematicsmethod.Itwillimprovethestudent''''sthought,knowledgeandtheabilitytosolvepracticalproblemsbyintegratingthemathematicalmodelinginhighermathematicsteaching.

Keywords:highermathematics;mathematicalModeling;teaching;application

1引言

數(shù)學教學貫穿了小學、中學、大學等諸階段的學習過程,培養(yǎng)了學生以高度抽象的方式來學習、理解、應用數(shù)學及相關學科的能力[1]。從基本的概念和定義出發(fā),簡練地、合乎邏輯地推演出結(jié)論的教學過程,是學生逐漸形成縝密思維方式的過程。但不可否認的是,在醫(yī)用高等數(shù)學的教學實踐中,卻因為某些原因致使部分學生是為了“學數(shù)學”而學數(shù)學,導致興趣索然,對數(shù)學望而生畏;或者雖然對常規(guī)的數(shù)學題目“見題就會,一做就對”,但是對發(fā)生在身邊的實際問題,卻無法引進數(shù)學建模思想、思路以及基本方法,建立正確的數(shù)學模型。因此為了適應科學技術發(fā)展的需要和培養(yǎng)高質(zhì)量、高層次的應用性人才[1],怎樣將數(shù)學建模思想貫穿于醫(yī)用高等數(shù)學的整個教學過程中,以培養(yǎng)學生應用數(shù)學的意識和能力已經(jīng)成為數(shù)學教學的一個重要方面。

2對數(shù)學建模在培養(yǎng)學生能力方面的認識

數(shù)學建模是一種微小的科研活動,它對學生今后的學習和工作無疑會有深遠的影響,同時它對學生的能力也提出了更高的要求[2]。數(shù)學建模思想的普及,既能提高學生應用數(shù)學的能力,培養(yǎng)學生的創(chuàng)造性思維和合作意識,也能促進高校課程建設和教學改革,激發(fā)學生的創(chuàng)造欲和創(chuàng)新精神。數(shù)學建模教學著眼于培養(yǎng)大學生具有如下能力:

2.1培養(yǎng)“表達”的能力,即用數(shù)學語言表達出通過一定抽象和簡化后的實際問題,以形成數(shù)學模型(即數(shù)學建模的過程)。然后應用數(shù)學的方法進行推演或計算得到結(jié)果,并用較通俗的語言表達出結(jié)果。

2.2培養(yǎng)對已知的數(shù)學方法和思想進行綜合應用的能力,形成各種知識的靈活運用與創(chuàng)造性的“鏈接”。

2.3培養(yǎng)對實際問題的聯(lián)想與歸類能力。因為對于不少完全不同的實際問題,在一定的簡化與抽象后,具有相同或相似的數(shù)學模型,這正是數(shù)學應用廣泛性的表現(xiàn)。

2.4逐漸發(fā)展形成洞察力,也就是說一眼抓住(或部分抓住)要點的能力。

3有關數(shù)學建模思想融入醫(yī)學生高等數(shù)學教學的幾個事例3.1在關于導數(shù)定義的教學中融入數(shù)學建模思想

在講導數(shù)的概念時,給出引例:求變速直線運動的瞬時速度[3,4],在求解過程中融入建模思想,與學生一起體會模型的建立過程及解決問題的思想方法。通過師生共同分析討論,有如下模型建立過程:

3.1.1建立時刻t與位移s之間的函數(shù)關系:s=s(t)。

3.1.2平均速度近似代替瞬時速度。根據(jù)已有知識,僅能解決勻速運動瞬時速度的問題,但可以考慮用某段時間中的平均速度來近似代替這段時間中某時刻的瞬時速度。對于勻速運動,平均速度υ是一常數(shù),且為任意時刻的速度,于是問題轉(zhuǎn)化為:考慮變速直線運動中瞬時速度和平均速度之間的關系。我們先得到平均速度。當時間由t0變到t0+Δt時,路程由s0=s(t0)變化到s0+Δs=s(t0+Δt),路程的增量為:Δs=s(t0+Δt)-s(t0)。質(zhì)點M在時間段Δt內(nèi),平均速度為:

υ=Δs/Δt=s(t0+Δt)-s(t0)/Δt(1)

當Δt變化時,平均速度也隨之變化。

3.1.3引入極限思想,建立模型。質(zhì)點M作變速運動,由式(1)可知,當|Δt|較小時,平均速度υ可近似看作質(zhì)點在時刻t0的“瞬時速度”。顯然,當|Δt|愈小,其近似程度愈好,引入極限的思想來表示|Δt|愈小,即:Δt→0。當Δt→0時,若趨于確定值(即極限存在),該值就是質(zhì)點M在時刻t0的瞬時速度υ,于是得出如下數(shù)學模型:

υ=limΔt→0υ=limΔt→0Δs/Δt=limΔt→0s(t0+Δt)-s(t0)/Δt

要求解這個模型,對于簡單的函數(shù)還比較容易計算,而對于復雜的函數(shù),極限值很難求出。但觀察到,當拋開其實際意義僅從數(shù)學結(jié)構(gòu)上看,這個數(shù)學模型實際上表示函數(shù)的增量與自變量增量比值、在自變量增量趨近于零時的極限值,我們把這種形式的極限定義為函數(shù)的導數(shù)。有了導數(shù)的定義,再結(jié)合導數(shù)的運算法則和相關的求導法則,前面的這個模型就從求復雜函數(shù)的極限轉(zhuǎn)化為單純求導數(shù)的問題,從而很容易求解。

3.2在定積分定義及其應用教學中融入數(shù)學建模思想對于理解與掌握定積分定義及其在幾何、物理、醫(yī)學和經(jīng)濟學等方面的應用,關鍵在于對“微元法”的講解。而要掌握這個數(shù)學模型,就一定要理解“以不變代變”的思想。以單位時間內(nèi)流過血管截面的血流量為例,我們來具體看看這個模型的建立與解決實際問題的整個思想與過程。

假設有一段長為l、半徑為R的血管,一端血壓為P1,另一端血壓為P2(P1>P2)。已知血管截面上距離血管中心為γ處的血液流速為

V(r)=P1-P2/4ηl(R2-r2)

式中η為血液粘滯系數(shù),求在單位時間內(nèi)流過該截面的血流量[3,4](如圖1(a))。

圖1

Fig.1

要解決這個問題,我們采用數(shù)學模型:微元法。

因為血液是有粘性的,當血液在血管內(nèi)流動時,在血管壁處受到摩擦阻力,故血管中心流速比管壁附近流速大。為此,將血管截面分成許多圓環(huán)來討論。

建立如圖1(b)坐標系,取血管半徑γ為積分變量,γ∈[0,R]于是有如下建模過程:

①分割:在其上取一個小區(qū)間[r,r+dr],則對應一個小圓環(huán)。

②以“不變代變”(近似):由于dr很小,環(huán)面上各點的流速變化不大,可近似看作不變,所以可用半徑為r處圓周上流速V(r)來近似代替。此圓環(huán)的面積也可以近似看作以圓環(huán)周長2πr為長,dr為寬的矩形面積2πrdr,則該圓環(huán)內(nèi)的血流量可近似為:ΔQ≈V(r)2πrdr,則血流量微元為:dQ=V(r)2πrdr

③求定積分:單位時間內(nèi)流過該截面的血流量為定積分:Q=R0V(r)2πrdr。

以上實例,體現(xiàn)了微元法先分割,再近似,然后求和,最后取極限的建模過程,并成功把所求量表示成了定積分的形式,最終可以應用高等數(shù)學的知識求出所求量的建模思想。

4結(jié)語

高等數(shù)學課的中心內(nèi)容并不是建立數(shù)學模型,我們只是通過數(shù)學建模強化學生的數(shù)學理論知識的應用意識,激發(fā)學生學習高等數(shù)學的積極性和主動性。所以在授課時應從簡潔、直觀、結(jié)合實際入手,達到既有助于理解教學內(nèi)容,又可以通過對實際問題的抽象、歸納、思考,用所學的數(shù)學知識給予解決。所選的模型,最好盡可能結(jié)合醫(yī)學實際問題,且具一定的趣味性,從而使學生體會到數(shù)學來源于生活實際,又應用于生活實際之中,以激發(fā)學生學好數(shù)學的決心,提高他們應用數(shù)學解決實際問題的能力[5]。

總之,高等數(shù)學教學的目的是提高學生的數(shù)學素質(zhì),為進一步學習其專業(yè)課打下良好的數(shù)學基礎。教學中融入數(shù)學建模思想,可使學生的想象力、洞察力和創(chuàng)造力得到培養(yǎng)和提高的同時,也提高學生應用數(shù)學思想、知識、方法解決實際問題的能力。

【參考文獻】

[1]洪永成,李曉彬.搞好數(shù)學建模教學提高學生素質(zhì)[J].上海金融學院學報,2004,3:(總63)6.

[2]姜啟源.數(shù)學模型[M].北京:高等教育出版社,1993,6.

[3]梅挺,鄧麗洪.高等數(shù)學[M].北京:中國水利水電出版社,2007,8.

[4]梅挺,賈其鋒,張明,等.高等數(shù)學學習指導[M].北京:中國水利水電出版社,2007,8.

[5]蔡文榮.數(shù)學建模與應用型人才培養(yǎng)[J].閩江學院學報(自然科學版),27(2),2006,4.

主站蜘蛛池模板: 新蔡县| 涞源县| 浮山县| 扶余县| 乾安县| 乌兰县| 昌平区| 垦利县| 绿春县| 安宁市| 横峰县| 泸西县| 鹿泉市| 淄博市| 栖霞市| 太湖县| 天柱县| 河西区| 如皋市| 株洲市| 波密县| 焉耆| 西丰县| 安丘市| 鸡东县| 正阳县| 吉安县| 南城县| 宜阳县| 原阳县| 株洲市| 黎城县| 平潭县| 宁津县| 巧家县| 宁国市| 石家庄市| 万载县| 曲靖市| 桂林市| 仙居县|